Biochemistry : Carbohydrate Metabolism

Study concepts, example questions & explanations for Biochemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Glycolysis Regulation

Glycolysis is an energy producing process that breaks down glucose. 

In glycolysis, feedback regulation is seen in which of the following examples?

Possible Answers:

Fructose-1,6-bisphosphate inhibiting pyruvate kinase

AMP inhibiting PFK-1 (phosphofructokinase-1) 

Hexokinase inhibited by ATP 

Insulin inhibiting pyruvate kinase.

ATP inhibiting PFK-1 (phosphofructokinase-1) 

Correct answer:

ATP inhibiting PFK-1 (phosphofructokinase-1) 

Explanation:

Feedback inhibition is a process by which the products of a reaction or series of reactions slows, stops or inhibits one of the previous reactions in the process, thereby controlling the rate of reaction, and rate of formation of the products.

In glycolysis, one of the end products is energy in the form of ATP. ATP acts as an inhibitor of phosphofructokinase-1, one of the main rate limiting enzymes in glycolysis. 

Example Question #171 : Carbohydrate Metabolism

In which of the following cases would the citric acid cycle be downregulated?

Possible Answers:

Lower levels of NADH

High levels of ATP

Increased amounts of 

High levels of ADP

Correct answer:

High levels of ATP

Explanation:

The purpose of the citric acid cycle is to produce energy (both directly via GTP, and indirectly via NADH and . As such, energy can be though of to be on the products side of the sum of the reactions of the Krebs cycle. From Le Chatelier's principle, we know that if we want to inhibit a forward reaction, we can increase the concentration of the products. This will inhibit the forward reaction, and push the equilibrium to the left. Thus, in a high energy state, the ratio of ATP:ADP, like that of NADH: is high since both ATP and NADH are products of metabolism.

Example Question #43 : Citric Acid Cycle

Why can't acetyl-CoA produced from beta-oxidation enter into the Krebs Cycle without carbohydrates present?

Possible Answers:

Acetyl-CoA must first be activated by a carbohydrate before entering into the Krebs cycle

None of these

Acetyl-CoA can enter into the Krebs cycle without carbohydrates present

Downstream of the Krebs cycle, the electron transport chain can not function without carbohydrates present, which in turn causes the Krebs cycle to stop functioning

Acetyl-CoA combines with oxaloacetate to enter into the Krebs cycle which is a carbohydrate

Correct answer:

Acetyl-CoA combines with oxaloacetate to enter into the Krebs cycle which is a carbohydrate

Explanation:

The entry point for acetyl CoA in the Krebs cycle is oxaloacetate. Acetyl-CoA and oxaloacetate combine to form citrate, which then continues through the cycle. Oxaloacetate is a carbohydrate, and so without carbs the acetyl-CoA can not enter into the Krebs cycle.

Example Question #243 : Catabolic Pathways And Metabolism

Which of the following is not a regulated step of the citric acid cycle?

Possible Answers:

Alpha-ketoglutarate dehydrogenase

Citrate synthase

Isocitrate dehydrogenase

Succinate dehydrogenase

None of these

Correct answer:

Succinate dehydrogenase

Explanation:

The regulated steps of the citric acid cycle are citrate synthase, isocitrate dehydrogenase, and alpha-ketoglutarate dehydrogenase. These steps are inhibited and stimulated by various products and reactants within the citric acid cycle. Succinate dehydrogenase is not regulated by products or reactants, and is therefore not rate limiting.

Example Question #1 : Other Citric Acid Cycle Concepts

The citric acid cycle is __________.

Possible Answers:

neither anabolic, nor catabolic

both anabolic and catabolic

anabolic

catabolic

linear

Correct answer:

both anabolic and catabolic

Explanation:

The citric acid cycle is amphibolic—that is, both anabolic and catabolic. Anabolism occurs when the citric acid cycle generates reduced factors, such as NADH and FADH2. Catabolism occurs when the citric acid cycle oxidizes the two carbon atoms of acetyl CoA to carbon dioxide (CO2).  

Example Question #2 : Other Citric Acid Cycle Concepts

What is the end product of glycolysis?

Possible Answers:

Acetyl-CoA

Citrate

Pyruvate

Glucose

Correct answer:

Pyruvate

Explanation:

Glycolysis involves the conversion of glucose into pyruvate. Recall that glucose is a six-carbon molecule, while pyruvate is a three-carbon molecule. Thus for each molecule of glucose that undergoes glycolysis, two molecules of pyruvate are yielded. Next, pyruvate is converted into acetyl-CoA via the pyruvate dehydrogenase complex. Finally, acetyl-CoA enters the citric acid cycle, combining with oxaloacetate as the first step.

Example Question #53 : Citric Acid Cycle

Which enzyme is not found in the citric acid cycle?

Possible Answers:

Succinate dehydrogenase

Enolase

Fumarase

Aconitase

Correct answer:

Enolase

Explanation:

Enolase is the enzyme responsible for catalyzing the conversion of 2-phosphoglycerate into phosphoenolpyruvate. This reaction takes place during glycolysis. All other enzymes are involved in the sequence of reactions known as the citric acid cycle.

Example Question #54 : Citric Acid Cycle

What is the correct sequence of intermediates in the citrate acid cycle?

Possible Answers:

Citrate  cis-aconitate  isocitrate  alpha-ketoglutarate  succinate  succinyl-CoA  fumarate  malate  oxaloacetate

Citrate  cis-aconitate  isocitrate  succinyl-CoA  alpha-ketoglutarate  succinate  fumarate  malate  oxaloacetate

Citrate  cis-aconitate  isocitrate  alpha-ketoglutarate  succinyl-CoA  succinate  fumarate  malate  oxaloacetate

Citrate  cis-aconitate  isocitrate  alpha-ketoglutarate  succinyl-CoA  succinate  malate  fumarate  oxaloacetate

Correct answer:

Citrate  cis-aconitate  isocitrate  alpha-ketoglutarate  succinyl-CoA  succinate  fumarate  malate  oxaloacetate

Explanation:

This is the correct sequence of intermediates in the citric acid cycle. Note that both citrate and cis-aconitase are substrates for the same enzyme, aconitase. The net yield of one turn of the citric acid cycle is: , and . The electron carriers then participate in the electron transport system along the inner mitochondrial membrane.

Example Question #3 : Other Citric Acid Cycle Concepts

Which gas is produced during the citric acid cycle?

Possible Answers:

Nitrous oxide

Nitric oxide

Carbon dioxide

Methane

Correct answer:

Carbon dioxide

Explanation:

The citric acid cycle starts with the combination of a four-carbon molecule (oxaloacetate) and a two-carbon molecule (acetyl-CoA) to form a six-carbon molecule (citrate). Since the citric acid cycle is indeed a cycle, oxaloacetate must be regenerated. Thus, two molecules of carbon dioxide are produced throughout the citric acid cycle. The first molecule of carbon dioxide is produced during the conversion of isocitrate into alpha-ketoglutarate. This reaction is catalyzed by isocitrate dehydrogenase. Alpha-ketoglutarate, a five-carbon molecule, is then converted into the four-carbon molecule succinyl-CoA via alpha-ketoglutarate dehydrogenase, yielding another molecule of carbon dioxide. The remaining steps of the citric acid cycle do not involve any more production of carbon dioxide since both succinyl-CoA and oxaloacetate are both four-carbon molecules.

Example Question #4 : Other Citric Acid Cycle Concepts

In the Krebs cycle, alpha-ketoglutarate is converted to succinyl-CoA. During this same step, one molecule of __________ is produced.

Possible Answers:

Correct answer:

Explanation:

The enzyme alpha-ketoglutarate dehydrogenase catalyzes the conversion of alpha-ketoglutarate (5 carbons) to succinyl-CoA (4 carbons). During this step, one carbon is lost as carbon dioxide and one molecule of  is produced. This step is the second, and last step in the Krebs cycle in which carbon dioxide is formed. Recall that the starting material, oxaloacetate, is also 4 carbons long.

Learning Tools by Varsity Tutors