Biochemistry : Biochemical Signaling

Study concepts, example questions & explanations for Biochemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Signal Transduction Pathways

How do diacylglycerol (DAG) and IP3 (inositol triphosphate) act as second messengers?

I. Phospholipase catalyses the formation of DAG and IP3 from PIP2 (phosphatidylinositol-4,5-bisphosphate)

II. IP3 increases intracellular calcium ion levels

III. DAG stimulates protein kinase C

IV. Protein kinase C activates protein kinases known as the MAP kinases

Possible Answers:

II and III

I, II, III, and IV

II, III, and IV

III and IV

I and II

Correct answer:

I, II, III, and IV

Explanation:

Phospholipase C catalyses the formation of DAG (diacylglycerol) and IP3 (inositol triphosphate) from PIP2 (phosphatidylinositol-4,5-bisphosphate). IP3 promotes the influx of calcium ions into the cytoplasm while DAG stimulates protein kinase C.

Example Question #52 : Signal Transduction Pathways

How does nitric oxide act as a second messenger?

I. Nitric oxide activates guanylate cyclase.

II. Nitric oxide promotes formation of the intracellular messenger cyclic guanosine monophosphate (cGMP).

III. An increase of cGMP due to nitric oxide causes vasodilation.

IV. Nitric oxide promotes formation of cyclic adenosine monophosphate (cAMP) 

Possible Answers:

I and IV

I, II, and III

II and III

II, III, and IV

I and II

Correct answer:

I, II, and III

Explanation:

Nitric oxide is a gas second messenger.It is also a neurotransmitter in the brain. Nitric oxide is produced by 3 enzymes: endothelial, induced, and neuronal nitric oxide synthases. Nitric oxide synthases require a calcium ions for the enzyme activity. Nitric oxide does act thru the cyclic guanosine monophosphate activation pathway.

Example Question #20 : Second Messengers

Which of the following is not associated with signal transduction pathways?

Possible Answers:

Activation of protein kinase A

Breakdown of phosphatidylinositol bisphosphate

Synthesis of beta-hydroxybutyrate

Activation of phosphodiesterases

Dissociation of G protein subunits

Correct answer:

Synthesis of beta-hydroxybutyrate

Explanation:

In this question, we're asked to identify a statement that is not connected with intracellular signal transduction pathways (STP). To do so, we'll need to look at each answer choice individually.

Upon binding of a ligand to a G protein-coupled receptor (GPCR), the conformational change of this receptor is transmitted to a G-protein that is on the inner leaflet of the plasma membrane. This causes the individual sub-units of the G-protein to dissociate from each other, which then goes on to activate other components of the signal transduction pathway.

Activation of GPCR can also result in a signal transduction pathway in which a particular intracellular enzyme is activated. This enzyme is responsible for cleaving a specific fatty acid off of certain phospholipids from the plasma membrane. The fatty acid cleaved off is called phosphatidylinositol bisphosphate, which acts as a second messenger in STP's.

Another consequence of the activation of certain GPCR's is the activation of an enzyme called protein kinase A (PKA). This enzyme then goes on to phosphorylate other kinase enzymes. The end result is amplification of the entire signal.

One of the common second messengers in STP's is cyclic AMP (cAMP) and cyclic GMP (cGMP). One of the mechanisms in place to turn STP's off is to degrade these cyclic nucleotides. The class of enzymes responsible for this is called phosphodiesterases.

Beta-hydroxybutyrate is a ketone body that forms when excess acetyl-CoA is present. This molecule is not involved in signal transduction pathways.

Example Question #21 : Second Messengers

In a G protein-coupled receptor, the activation of an inhibitory G protein will lead to which of the following?

Possible Answers:

The decrease in cAMP

Adenyl cyclase hydrolysis of ATP

An inactivated alpha subunit of the G protein 

Downstream activation of PKA

The activation of adenylyl cyclase

Correct answer:

The decrease in cAMP

Explanation:

With an inhibitory G protein, the binding of a ligand and stimulation of the receptor will activate the alpha subunit of the G protein, however since it is an inhibitory G protein, it will not go on to activate adenyl cyclase. With no activation of Adenyl cyclase it will lead to decrease cAMP and other secondary messengers. 

Example Question #1 : Hormones And Neurotransmitters

A researcher is analyzing a hormone. His results reveal that the hormone does not enter the cell. What can you conclude about this hormone?

Possible Answers:

It is positively charged at physiological pH

It is negatively charged at physiological pH

It forms clumps in an aqueous solution

It could have aspartic acid as one of its amino acids

Correct answer:

It could have aspartic acid as one of its amino acids

Explanation:

Steroid hormones are nonpolar molecules that can travel across the hydrophobic (or nonpolar) interior of the plasma membrane whereas peptide hormones are polar molecules that cannot travel across the hydrophobic interior. The question states that the hormone cannot enter the cell. This means that it cannot traverse the plasma membrane and, therefore, must be a peptide hormone. A peptide is made up of several amino acids. There are polar and nonpolar amino acids. Since they are polar, peptide hormones must have at least a few polar amino acids. These polar amino acids can be positively charged, negatively charged, or uncharged. There are twelve polar amino acids, five of which are charged (aspartic acid, glutamic acid, histidine, lysine, and arginine). Aspartic acid and glutamic acid are negatively charged at physiologic pH, whereas the other three are positively charged. A molecule that forms clumps in water is hydrophobic and nonpolar. Since we are dealing with a peptide hormone, the hormone will dissolve and not form clumps in water. A steroid hormone, on the other hand, is nonpolar and will form clumps in water.

Example Question #1 : Hormones And Neurotransmitters

Which of the following hormones does not have its receptor in the cytoplasm?

Possible Answers:

Hormone containing isoleucine, glycine, and tryptophan

None of these hormones will have a cytoplasmic receptor

Hormone containing phenylalanine, histidine, and methionine

Hormone containing valine, leucine, and lysine

Correct answer:

Hormone containing phenylalanine, histidine, and methionine

Explanation:

A hormone is a signaling molecule that binds to a receptor and initiates a signaling cascade inside the cell. The receptor for a hormone can be found on the periphery of the cell (on plasma membrane) or inside the cell (cytoplasm or nucleoplasm). A steroid hormone is nonpolar and can traverse the hydrophobic interior of the plasma membrane whereas a peptide hormone is polar and cannot traverse the hydrophobic interior; therefore, a steroid hormone will have its receptor inside the cell whereas a peptide hormone will have its receptor on the plasma membrane. The question is asking us to find the polar, peptide hormone (because its receptor will be found on the plasma membrane, not in cytoplasm). To answer this question, we need to know which amino acids are polar. Recall that there are twelve polar amino acids. They are serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, histidine, lysine, and arginine; therefore, the hormone containing phenylalanine, histidine, and methionine is most likely to be polar. The rest of the hormones have nonpolar amino acids only.

Example Question #1 : Hormones And Neurotransmitters

Which of the following molecules might be involved in a peptide hormone pathway? 

I. G protein coupled receptor

II. Receptor tyrosine kinase

III. Cyclic adenosine monophosphate

Possible Answers:

I, II and III

I and III

II and III

I and II

Correct answer:

I, II and III

Explanation:

Peptide hormones are polar molecules that cannot traverse the plasma membrane. Recall that plasma membranes have a hydrophobic interior. Since peptide hormones are polar, they cannot travel through this hydrophobic interior of the plasma membrane; therefore, peptide hormones signal cells by binding to receptors on the plasma membrane. There are several types of hormone receptors on the membrane, including G protein coupled receptors and receptor tyrosine kinases. Upon binding, the receptors activate themselves and other intracellular molecules called second messengers. This leads to a signaling cascade that ultimately results in upregulation or downregulation of processes inside the cell. Second messenger molecules facilitate the amplification and propagation of signal throughout the cell. Cyclic adenosine monophosphate, or cAMP, is one of the most common second messenger molecules; therefore, all three molecules listed in this question are involved in peptide hormone pathway.

Example Question #3 : Hormones And Neurotransmitters

How does insulin facilitate the entry of glucose into adipose and muscle tissue?

Possible Answers:

Increasing the permeability of the plasma membrane to all solutes

Increasing the translocation of GLUT-4 receptors to the cell surface

Increasing the translocation of GLUT-2 receptors to the cell surface

Binding with plasma glucose to form an absorbable complex

Inhibiting glucokinase in the liver

Correct answer:

Increasing the translocation of GLUT-4 receptors to the cell surface

Explanation:

Insulin promotes the translocation of GLUT-4 receptors to the cell surface through cell signaling triggered by its binding to cell surface insulin receptors. GLUT-2 transporters are insulin-independent and are found in tissues like the pancreas and liver where immediate glucose sensing is important for whole body function (The pancreas needs to sense glucose so it can secrete insulin for the rest of the body. Imagine if the pancreas itself needed insulin.)

Example Question #1 : Hormones And Neurotransmitters

Glucagon and epinephrine are similar in that they induce __________.

Possible Answers:

Gluconeogenesis and protein synthesis

Glycogenesis only

glycogenolysis and gluconeogenesis

Lipid synthesis only

Prostaglandin synthesis only

Correct answer:

glycogenolysis and gluconeogenesis

Explanation:

Glucagon and epinephrine are typically thought of as having catabolic effects; however, their purpose is to increase the availability of fuel substrates to extra-hepatic tissues during the fasting state or during fight or flight situations, respectively. So, while many of their effects like glycogenolysis and lipolysis conform to this pattern, they also induce the anabolic process of gluconeogenesis in the liver to increase the availability of glucose to other tissues.

Example Question #2 : Hormones And Neurotransmitters

The peptide hormone adrenocorticotropic hormone (ACTH) is secreted from the pituitary gland and stimulates the production of the glucocorticoid cortisol in the adrenal cortex. Which of the following best describes the feedback pathway by which ACTH is regulated by cortisol? 

Possible Answers:

Cortisol stimulates the release of corticotropin-releasing hormone from the hypothalamus, which results in an increase in ACTH released from the pituitary gland. This is a positive feedback loop. 

Cortisol stimulates the release of fibroblast growth factor hormone from the hypothalamus, which results in an increase in ACTH released from the pituitary gland. This is a positive feedback loop. 

Cortisol inhibits the release of fibroblast growth factor hormone from the hypothalamus, which results in a decrease in ACTH released from the pituitary gland. This is a negative feedback loop. 

Cortisol stimulates the release of corticotropin-releasing hormone from the hypothalamus, which results in a decrease in ACTH released from the pituitary gland. This is a positive feedback loop. 

Cortisol inhibits the release of corticotropin-releasing hormone from the hypothalamus, which results in a decrease in ACTH released from the pituitary gland. This is a negative feedback loop. 

Correct answer:

Cortisol inhibits the release of corticotropin-releasing hormone from the hypothalamus, which results in a decrease in ACTH released from the pituitary gland. This is a negative feedback loop. 

Explanation:

ACTH is regulated by a negative feedback loop, in which ACTH secretion stimulates production of cortisol, but this feeds back on to the hypothalamus to inhibit the production of corticotropin-releasing hormone (CRH). CRH is a positive regulator of ACTH production, so a decrease in CRH ultimately results in a decrease in ACTH. 

Learning Tools by Varsity Tutors