Basic Geometry : Quadrilaterals

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Area Of A Rectangle

Screen_shot_2013-09-16_at_11.28.29_am

What is the area of the rectangle in the diagram?

Possible Answers:

\displaystyle 90\ cm^{2}

\displaystyle 84\ cm^{2}

\displaystyle 144\ cm^{2}

\displaystyle 49\ cm^{2}

\displaystyle 19\ cm^{2}

Correct answer:

\displaystyle 84\ cm^{2}

Explanation:

The area of a rectangle is found by multiplying the length by the width.

\displaystyle Area=l(w)

The length is 12 cm and the width is 7 cm.

\displaystyle 12\cdot 7=84

Therefore the area is 84 cm2.

Example Question #3 : How To Find The Area Of A Rectangle

What is the area of a rectangle whose length and width is \displaystyle 14 inches and \displaystyle 18 inches, respectively?

Possible Answers:

\displaystyle 64\, in^2

\displaystyle 128\, in^2

\displaystyle 148\, in^2

\displaystyle 252\,in^2

\displaystyle 220\, in^2

Correct answer:

\displaystyle 252\,in^2

Explanation:

The area of any rectangle with length, \displaystyle l and width, \displaystyle w is:

\displaystyle A=l\times w

\displaystyle A=14\times 18

\displaystyle A=252\, in^2

Example Question #3 : How To Find The Area Of A Rectangle

What is the area of a rectangle that has a length of \displaystyle 2 and a width of \displaystyle 20?

Possible Answers:

\displaystyle 80

\displaystyle 40

\displaystyle 22

\displaystyle 10

Correct answer:

\displaystyle 40

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=2 \times 20=40

Example Question #4 : How To Find The Area Of A Rectangle

What is the area of a rectangle that has a length of \displaystyle 12 and a width of \displaystyle 10?

Possible Answers:

\displaystyle 120

\displaystyle 22

\displaystyle 60

\displaystyle 130

Correct answer:

\displaystyle 120

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=12 \times 10= 120

Example Question #1 : How To Find The Area Of A Rectangle

What is the area of a rectangle that has a length of \displaystyle 8 and a width of \displaystyle 30?

Possible Answers:

\displaystyle 240

\displaystyle 38

\displaystyle 120

\displaystyle 360

Correct answer:

\displaystyle 240

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=8 \times 30= 240

Example Question #5 : How To Find The Area Of A Rectangle

What is the area of a rectangle that has a length of \displaystyle 100 and a width of \displaystyle 4?

Possible Answers:

\displaystyle 104

\displaystyle 600

\displaystyle 200

\displaystyle 400

Correct answer:

\displaystyle 400

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=100 \times 4= 400

Example Question #151 : Quadrilaterals

What is the area of a rectangle that has a length of \displaystyle 65 and a width of \displaystyle 20?

Possible Answers:

\displaystyle 1300

\displaystyle 980

\displaystyle 650

\displaystyle 2600

Correct answer:

\displaystyle 1300

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=65 \times 20= 1300

Example Question #152 : Quadrilaterals

What is the area of a rectangle that has a length of \displaystyle 90 and a width of \displaystyle 40?

Possible Answers:

\displaystyle 5600

\displaystyle 1800

\displaystyle 130

\displaystyle 3600

Correct answer:

\displaystyle 3600

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=90 \times 40= 3600

Example Question #153 : Quadrilaterals

What is the area of a rectangle that has a length of \displaystyle 18 and a width of \displaystyle 6?

Possible Answers:

\displaystyle 96

\displaystyle 108

\displaystyle 54

\displaystyle 216

Correct answer:

\displaystyle 108

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

\displaystyle \text{Area}=18 \times 6= 108

Example Question #154 : Quadrilaterals

What is the area of a rectangle that has a length of \displaystyle \frac{4}{5} and a width of \displaystyle \frac{1}{2}?

Possible Answers:

\displaystyle \frac{13}{10}

\displaystyle \frac{7}{5}

\displaystyle \frac{1}{5}

\displaystyle \frac{2}{5}

Correct answer:

\displaystyle \frac{2}{5}

Explanation:

Recall how to find the area of a rectangle:

\displaystyle \text{Area}=\text{length}\times\text{width}

Now, plug in the given length and width to find the area.

When multiplying fractions, multiply the numerators together and multiply the denominators together. After multiplication is done, find common factors in the numerator and denominator to cancel out and completely simplify the fraction.

\displaystyle \\ \text{Area}=\frac{4}{5} \times \frac{1}{2}\\ \\ \text{Area}=\frac{4}{10}=\frac{2\cdot 2}{2\cdot 5}\\ \\\text{Area}= \frac{2}{5}

Learning Tools by Varsity Tutors