Basic Geometry : How to find the height of a 45/45/90 right isosceles triangle

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

Img050

Possible Answers:

Correct answer:

Explanation:

Example Question #52 : 45/45/90 Right Isosceles Triangles

Find the height of the 45-45-90 right triangle with a hypotenuse of .

Possible Answers:

Correct answer:

Explanation:

If the hypotenuse of a 45-45-90 right triangle is then:

The height and the base of the triangle will be the same length since it is a 45-45-90 triangle (isosceles).

Since both a and b will be equal let's use  a=b=x and :

Example Question #1 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

What is the height of a  triangle if its hypotenuse is  cm. 

Find_the_height

Possible Answers:

Correct answer:

Explanation:

Given that is a 45/45/90 triangle, it means that it's also isosceles. Because the hypotenuse if 2√7 cm, that means that the base and the height (the two remaining sides) will be equivalent. 

The length of one of the legs can be solved for in one of two ways.

1. The Pythagorean Theorem

2. Using Find_the_leg_length_resolution

 

Using the Pythagorean Theorem, , we've already determined that "a" and "b" are the same number. Lets say .  This allows for the equation to be rewritten as , which may be simplified into 

Because s is our unknown, we will be solving for s. 

Example Question #1 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Example Question #2 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height of the triangle?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Example Question #2 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Simplify.

Example Question #3 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height of the triangle?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Simplify.

Example Question #7 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Simplify.

Example Question #4 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Simplify.

Example Question #2 : How To Find The Height Of A 45/45/90 Right Isosceles Triangle

If the hypotenuse of an isoceles right triangle is , what is the length of the height?

Possible Answers:

Correct answer:

Explanation:

An isoceles right triangle is another way of saying that the triangle is a  triangle. 

3

Now, recall the Pythagorean theorem:

Because we are working with a  triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Simplify.

Multiply the fraction by one in the form of:

Substitute.

Solve.

Now, substitute in the value of the hypotenuse to find the height for the given triangle.

Simplify.

Learning Tools by Varsity Tutors