All AP Statistics Resources
Example Questions
Example Question #1 : How To Use Boxplots To Summarize A Data Set
Which data set would be represented by this boxplot?
A boxplot indicates the quartiles of the data set. In this case we can see that the median or second quartile is 15. We can immediately eliminate
as a choice, since its median is 13.75, not to mention its smallest value is 10 rather than 1. The other choices all go from 1 to 26 like the boxplot indicates.
Now we need to find the data set with the correct first and third quartile. The boxplot indicates that our first quartile is 10.5. We can find Q1 by finding the median of the lower half, not including the median:
has Q1 of 12.5, found by taking the mean of 12 and 13. We can eliminate this choice.
has a Q1 of 6, found by taking the mean of 5 and 7. We can eliminate this choice.
has a Q1 of 10.5, which is exactly what we want. We can also verify that the median of the top half is 20.5.
Example Question #41 : Univariate Data
Which statement about the data represented by this boxplot is not true?
The range is exactly twice the interquartile range.
The interquartile range is 10.
The median is 15.
The third quartile is 9.
The third quartile is 9.
In order to get this question right, we need to be able to distinguish between the first and the third quartile.
The third quartile, 19, is the median of the upper half of the data.
The first quartile, 9, is the median of the lower half of the data.
This means that the "correct" wrong statement is "the third quartile is 9," since 9 is the first quartile.
Example Question #1 : How To Find Z Scores For A Data Set
This past week, the temperature has fluctuated quite a bit. From Monday to Sunday, temperatures in Fahrenheit have been the following: 62, 68, 52, 40, 78, 72, 60. The standard deviation is given as 13 and does not need to be calculated. Convert these daily temperatures into z-scores and give the days that are at least one standard deviation away from the mean.
Wednesday
Friday
Thursday and Friday
Thursday
Thursday and Wednesday
Thursday and Friday
To convert the temperatures into the z-scores, subtract the mean temperature (61.7) from the daily temperatures and divide this by the given standard deviation (13). The daily z-scores are .02, .53, -.81, -1.8, 1.4, .86, and -.14. Recall that z-scores tell you how many standard deviations away from the mean a given observation is.
Only Thursday and Friday are greater than one.
Example Question #1 : How To Find Z Scores For A Data Set
The average score on the statistics final exam was 85 and the standard deviation was . Chris scored a . Chris scored higher than what percent of his class?
The first step in this problem is calculating the z-score.
The next step is to look up 4 in the z-table. The value from the table is .
Example Question #1 : How To Find Z Scores For A Data Set
What is the -score for a value of 115 when the mean of the population is 103 and the standard deviation is 8?
A -score indicates whether a particular value is typical for a population or data set. The closer the -score is to 0, the closer the value is to the mean of the population and the more typical it is. The -score is calculated by subtracting the mean of a population from the particular value in question, then dividing the result by the population's standard deviation.
Example Question #1 : How To Find Z Scores For A Data Set
A population of values has a mean of 43 and a standard deviation of 12. One of the values in the population is 49. What is the Z-score for that value?
A Z-score indicates whether a particular value is typical for a population or data set. The closer the Z-score is to 0, the closer the value is to the mean of the population and the more typical it is. The Z-score is calculated by subtracting the mean of a population from the particular value in question, then dividing the result by the population's standard deviation.
Example Question #2 : How To Find Z Scores For A Data Set
The z-score is also known as the standard score.
The average temperature for all the days preceding the last for the month of February was 55 degrees Farhenheit, with a standard deviation of 5 degrees.
On the last day, the temperature was 73 degrees F. What is the z-score for the temperature on the last day?
To find the z-score, follow the formula
or
Example Question #3 : How To Find Z Scores For A Data Set
A population has a standard deviation of and a mean of . One of the values in the population is . What is the z score for that value?
A z score is unique to each value within a population.
To find a z score, subtract the mean of a population from the particular value in question, then divide the result by the population's standard deviation.
Example Question #1 : How To Find Z Scores For A Data Set
Natalie took her university placement examinations in Spanish and math. In Spanish, she scored 82; in math, she scored 86. The results of the Spanish exam had a mean of 72 and a standard deviation of 8. The results of the math exam had a mean of 68 and a standard deviation of 12. On which exam did Natalie do better, compared with the rest of her peers taking these placement exams?
The Spanish exam
The Math exam
She did equally well on both exams
None of the other answers, as z-scores cannot be calculated for this question
The Math exam
We need to calculate Natalie's z-scores for both her Spanish and math exams. Calculating z-scores is as follows:
Her z-score for the Spanish exam is , which equals 1.25, while her z-score for the math exam is , which equals 1.50. Since both z-scores are positive, Natalie did above average on both tests, but since her z-score for the math exam is higher than her z-score for the Spanish exam, Natalie did better on her math exam when compared to the rest of her peers taking the exam.
Example Question #1 : How To Find Z Scores For A Data Set
The following data set represents Mr. Marigold's students' scores on the final. The standard deviation for this data set is 8.41. How many standard deviations are you away from the mean if you scored an 86? [find your z-score]
To calculate the z-score, first we need to find the mean of the data set. By adding together and dividing by 26, we get 81.15.
To calculate your z-score and discover how close your score is to the mean in terms of standard deviations, use this formula:
where x is your data point, 86, is the mean, 81.15, and is the standard deviation, which we are told is 8.41.
Certified Tutor