AP Physics 1 : Electricity

Study concepts, example questions & explanations for AP Physics 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Circuit Diagrams

Circuit diagram

\displaystyle I=30A

\displaystyle R_1=2\Omega 

\displaystyle R_2=3\Omega

In the circuit above, what is the total voltage?

Possible Answers:

\displaystyle 25V

\displaystyle 75V

\displaystyle 36V

\displaystyle 150 V

\displaystyle 30V

Correct answer:

\displaystyle 36V

Explanation:

To find the voltage, first find the combined resistances of the resistors in parallel:

\displaystyle \frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}=\frac{1}{2\Omega }+\frac{1}{3\Omega }

\displaystyle \frac{1}{R_T}=\frac{5}{6\Omega }

\displaystyle R_T=\frac{6}{5}\Omega

Use Ohm's law to find the voltage.

\displaystyle V=IR

\displaystyle V=30A\left(\frac{6}{5}\Omega\right)=36V

Example Question #3 : Understanding Circuit Diagrams

Circuit diagram

\displaystyle V=5V

\displaystyle I=1.25A

\displaystyle R_1=6\Omega

In the circuit above, what is the resistance of \displaystyle R_2?

Possible Answers:

\displaystyle 2\Omega

\displaystyle -2\Omega

\displaystyle 12\Omega

\displaystyle 2.4\Omega

\displaystyle 10\Omega

Correct answer:

\displaystyle 12\Omega

Explanation:

Find the total resistance of the circuit, which can be determined using Ohm's law.

\displaystyle V=IR

\displaystyle R_T=\frac{V}{I}

\displaystyle R_T=\frac{5}{1.25}\Omega=4\Omega

Now, the resistance of the second resistor can be found. Since the two resistors are in parallel, they're related to the total resistance as follows:

\displaystyle \frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}

Rearrange and solve for \displaystyle R_2

\displaystyle \frac{1}{R_2}=\frac{1}{R_T}-\frac{1}{R_1}

\displaystyle \frac{1}{R_2}=\frac{1}{4\Omega }-\frac{1}{6\Omega }=\frac{6-4}{24\Omega }=\frac{1}{12\Omega }

\displaystyle R_2=12\Omega

Example Question #5 : Understanding Circuit Diagrams

Circuit diagram2

\displaystyle R_1=3\Omega

\displaystyle R_2=6\Omega

\displaystyle R_3=2\Omega

\displaystyle R_4=16\Omega

In the circuit above, what is the total resistance?

Possible Answers:

\displaystyle \frac{9}{32}\Omega

\displaystyle \frac{34}{5}\Omega

\displaystyle 27\Omega

\displaystyle \frac{27}{2}\Omega

\displaystyle \frac{34}{9}\Omega

Correct answer:

\displaystyle \frac{34}{9}\Omega

Explanation:

Find the combined resistances for the resistors in parallel:

\displaystyle \frac{1}{R_A}=\frac{1}{R_1}+\frac{1}{R_2}

\displaystyle \frac{1}{R_A}=\frac{1}{3\Omega}+\frac{1}{6\Omega}=\frac{9}{18\Omega}

\displaystyle R_A=2\Omega

\displaystyle \frac{1}{R_B}=\frac{1}{R_3}+\frac{1}{R_4}

\displaystyle \frac{1}{R_B}=\frac{1}{2\Omega}+\frac{1}{16\Omega}=\frac{18}{32\Omega}

\displaystyle R_B=\frac{16}{9}\Omega

Combine these two combined series resistors to find the total resistance:

\displaystyle R_T=R_A+R_B=2\Omega+\frac{16}{9}\Omega=\frac{34}{9}\Omega

 

Example Question #4 : Understanding Circuit Diagrams

Circuit diagram2

\displaystyle R_1=1\Omega

\displaystyle R_2=2\Omega

\displaystyle R_3=3\Omega

\displaystyle R_4=4\Omega

\displaystyle V=10V

In the circuit above, what is the voltage drop across \displaystyle R_3?

Possible Answers:

\displaystyle 12.6 V

\displaystyle 5.4V

\displaystyle 1.3V

\displaystyle 2.8 V

\displaystyle 7.2V

Correct answer:

\displaystyle 7.2V

Explanation:

Find the total resistance of the circuit. First, calculate the values of the combined resistances of the resistors in parallel:

\displaystyle \frac{1}{R_A}=\frac{1}{R_1}+\frac{1}{R_2}

\displaystyle \frac{1}{R_A}=\frac{1}{1\Omega}+\frac{1}{2\Omega}=\frac{3}{2\Omega}

\displaystyle R_A=\frac{2}{3}\Omega

\displaystyle \frac{1}{R_B}=\frac{1}{R_3}+\frac{1}{R_4}

\displaystyle \frac{1}{R_B}=\frac{1}{3\Omega}+\frac{1}{4\Omega}=\frac{7}{12\Omega}

\displaystyle R_B=\frac{12}{7}\Omega

Therefore, the total resistance is:

\displaystyle R_T=R_A+R_B=\frac{2}{3}\Omega+\frac{12}{7}\Omega=\frac{50}{21}\Omega

Now, note that since \displaystyle R_3 and \displaystyle R_4 are in parallel, the voltage drop across them is the same. Use Ohm's law to relate current in terms of voltage and resistance.

\displaystyle I=\frac{V_T}{R_T}

Substitute into Ohm's law for the resistance across \displaystyle R_3:

\displaystyle V_{3,4}=\frac{V}{R_T}R_B

\displaystyle V_{3,4}=10V\left(\frac{21}{50\Omega}\right)\left(\frac{12\Omega}{7}\right)

\displaystyle V_{3,4}=7.2V

Example Question #1311 : Ap Physics 1

Circuit diagram2

\displaystyle R_1=1\Omega

\displaystyle R_2=2\Omega

\displaystyle R_3=3\Omega

\displaystyle R_4=4\Omega

\displaystyle V=10V

In the circuit above, what is the current passing through \displaystyle R_3?

Possible Answers:

\displaystyle 4.2A

\displaystyle 1.4A

\displaystyle 2.4A

\displaystyle 1.8A

\displaystyle 2.8A

Correct answer:

\displaystyle 2.4A

Explanation:

Find the total resistance of the circuit. First, calculate the values of the combined resistances of the resistors in parallel:

\displaystyle \frac{1}{R_A}=\frac{1}{R_1}+\frac{1}{R_2}

\displaystyle \frac{1}{R_A}=\frac{1}{1\Omega}+\frac{1}{2\Omega}=\frac{3}{2\Omega}

\displaystyle R_A=\frac{2}{3}\Omega

\displaystyle \frac{1}{R_B}=\frac{1}{R_3}+\frac{1}{R_4}

\displaystyle \frac{1}{R_B}=\frac{1}{3\Omega}+\frac{1}{4\Omega}=\frac{7}{12\Omega}

\displaystyle R_B=\frac{12}{7}\Omega

Therefore, the total resistance is:

\displaystyle R_T=R_A+R_B=\frac{2}{3}\Omega+\frac{12}{7}\Omega=\frac{50}{21}\Omega

From Ohm's law, we know that \displaystyle \frac{V}{R_T} is the current traveling through the circuit.

\displaystyle I=10V\left(\frac{21}{50\Omega}\right)=4.2A

This current will be divided between \displaystyle R3 and \displaystyle R4, with more current taking the path of lower resistance. 

Total voltage drop across \displaystyle R_{3,4}:

\displaystyle V_{3,4}=I_TR_{3,4}

\displaystyle V_{3,4}=4.2A\cdot\frac{12}{7}\Omega

\displaystyle V_{3,4}=7.2V

\displaystyle V_3=V_4=7.2V

The current through \displaystyle R_3 is given by:

\displaystyle I_3=\frac{V_3}{R_3}

\displaystyle I_3=\frac{7.2V}{3\Omega}=2.4A

Example Question #11 : Understanding Circuit Diagrams

Circuitdiagram3

\displaystyle R_1=3\Omega

\displaystyle R_2=6\Omega

\displaystyle R_3=2\Omega

\displaystyle R_4=10\Omega

In the circuit above, what is the total resistance?

Possible Answers:

\displaystyle 21\Omega

\displaystyle \frac{21}{108}\Omega

\displaystyle \frac{80}{21}\Omega

\displaystyle \frac{21}{80}\Omega

\displaystyle \frac{108}{21}\Omega

Correct answer:

\displaystyle \frac{80}{21}\Omega

Explanation:

Begin by combining the resistors that are immediately in series:

\displaystyle R_A=R_1+R_3=3\Omega+2\Omega=5\Omega

\displaystyle R_B=R_2+R_4=6\Omega+10\Omega=16\Omega

Circuit diagramab

Now to find the total resistance, combine these two new resistance values, which are in parallel:

\displaystyle \frac{1}{R_T}=\frac{1}{5\Omega}+\frac{1}{16\Omega}=\frac{21}{80\Omega}

\displaystyle R_T=\frac{80}{21}\Omega

Example Question #11 : Understanding Circuit Diagrams

Circuitdiagram3

\displaystyle R_1=1\Omega

\displaystyle R_2=2\Omega

\displaystyle R_3=3\Omega

\displaystyle R_4=4\Omega

\displaystyle V=10V

In the circuit above, what is the voltage drop across \displaystyle R_3?

Possible Answers:

\displaystyle 3.3V

\displaystyle 2.5 V

\displaystyle 5.0V

\displaystyle 6.7V

\displaystyle 7.5V

Correct answer:

\displaystyle 7.5V

Explanation:

To approach this problem, note that there are no other resistors (or combinations or resistors) beyond the parallel arrangement shown, so the voltage drop across the top \displaystyle (R_1,R_3) and the bottom \displaystyle (R_2,R_4) is the same and equal to the voltage across the circuit, \displaystyle 10V.

The voltage drop across \displaystyle R_3 can be found as:

\displaystyle V_3=\frac{R_3}{R_1+R_3}V=\frac{3\Omega}{1\Omega+3\Omega}10V=\frac{3}{4}\cdot10V

\displaystyle V_3=7.5V

Example Question #12 : Understanding Circuit Diagrams

Circuitdiagram3

\displaystyle R_1=1\Omega

\displaystyle R_2=2\Omega

\displaystyle R_3=3\Omega

\displaystyle R_4=4\Omega

\displaystyle V=10V

In the circuit above, what is the current passing through \displaystyle R_3?

Possible Answers:

\displaystyle 0.625A

\displaystyle 1.667A

\displaystyle 2.5A

\displaystyle 1.875A

\displaystyle 4.167A

Correct answer:

\displaystyle 2.5A

Explanation:

To approach this problem, note that there are no other resistors (or combinations or resistors) beyond the parallel arrangement shown, so the voltage drop across the top \displaystyle (R_1,R_3) and the bottom \displaystyle (R_2, R_4) is the same and equal to the voltage across the circuit, \displaystyle 10V.

Furthermore, the current that passes through \displaystyle R_1 must be the same as the current that passes through \displaystyle R_3.

Therefore, the current that passes through them can be found by rearranging Ohm's law, solving for current.

\displaystyle I_{1,3}=\frac{V}{R_1+R_3}=\frac{10V}{1\Omega+3\Omega}

\displaystyle I_{1,3}=2.5A

Example Question #13 : Understanding Circuit Diagrams

Basic circuit2

In the circuit above:

\displaystyle V_{in}=12V

\displaystyle Z_1=11\Omega

\displaystyle Z_2=21\Omega

\displaystyle Z_3=16\Omega

What is the current across \displaystyle Z_3?

Possible Answers:

\displaystyle 0.38A

\displaystyle 2.25A

\displaystyle 1.13A

\displaystyle 1.50A

\displaystyle 0.75A

Correct answer:

\displaystyle 0.75A

Explanation:

The quickest way to approach this problem is to realize that the voltage drop across \displaystyle Z_3 is the same as the voltage drop across the combined resistances of \displaystyle Z_1 and \displaystyle Z_2. Since this parallel combination is the only presence of resistance in the circuit, this voltage drop must be the total voltage of the circuit, \displaystyle 12V.

Therefore, the current across \displaystyle Z_3 is:

\displaystyle I_3=\frac{V_3}{Z_3}

\displaystyle I_3=\frac{12V}{16\Omega}

\displaystyle I_3=0.75A

Example Question #14 : Understanding Circuit Diagrams

Basic circuit2

In the circuit above:

\displaystyle V_{in}=12V

\displaystyle Z_1=11\Omega

\displaystyle Z_2=21\Omega

\displaystyle Z_3=16\Omega

What is the current across \displaystyle Z_2?

Possible Answers:

\displaystyle 0.375A

\displaystyle 1.50A

\displaystyle 0.750A

\displaystyle 2.25A

\displaystyle 1.125A

Correct answer:

\displaystyle 0.375A

Explanation:

Realize that the voltage drop across the combined resistances of \displaystyle Z_1 and \displaystyle Z_2 must be equal to the voltage of the circuit, since the parallel combination is the only presence of resistance in the circuit. This voltage drop must be the total voltage of the circuit, \displaystyle 12V.

The current across \displaystyle Z_1 and \displaystyle Z_2 is the same, and is given as:

\displaystyle I_1=I_2=\frac{12V}{Z_1+Z_2}

\displaystyle I_2=\frac{12V}{32\Omega}

\displaystyle I_2=0.375A

Learning Tools by Varsity Tutors