AP Calculus BC : Riemann Sum: Left Evaluation

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #105 : Ap Calculus Bc

Find the Left Riemann sum of the function

\displaystyle f(x)=x+7

on the interval \displaystyle [0,8] divided into four sub-intervals.

Possible Answers:

\displaystyle 40

\displaystyle 60

\displaystyle 100

\displaystyle 80

Correct answer:

\displaystyle 80

Explanation:

The interval \displaystyle [0, 8] divided into four sub-intervals gives rectangles with vertices of the bases at

\displaystyle x=0,2,4,6,8

For the Left Riemann sum, we need to find the rectangle heights which values come from the left-most function value of each sub-interval, or f(0), f(2), f(4), and f(6).

\displaystyle f(0) = 0+7 = 7

\displaystyle f(2) = 2+7 = 9

\displaystyle f(4) = 4+7 = 11

\displaystyle f(6) = 6+7 = 13

Because each sub-interval has a width of 2, the Left Riemann sum is

\displaystyle A = bh = 2(7+9+11+13) = 80

Example Question #1 : Integrals

Given a function \displaystyle y=x^{2}, find the Left Riemann Sum of the function on the interval \displaystyle [0,6] divided into three sub-intervals. 

Possible Answers:

\displaystyle 44

\displaystyle 36

\displaystyle 38

\displaystyle 42

\displaystyle 40

Correct answer:

\displaystyle 40

Explanation:

In order to find the Riemann Sum of a given function, we need to approximate the area under the line or curve resulting from the function using rectangles spaced along equal sub-intervals of a given interval. Since we have an interval \displaystyle [0,6] divided into \displaystyle 3 sub-intervals, we'll be using rectangles with vertices at \displaystyle x=0,2,4,6

To approximate the area under the curve, we need to find the areas of each rectangle in the sub-intervals. We already know the width or base of each rectangle is \displaystyle b=2 because the rectangles are spaced \displaystyle 2 units apart. Since we're looking for the Left Riemann Sum, we want to find the heights \displaystyle h of each rectangle by taking the values of each leftmost function value on each sub-interval, as follows:

\displaystyle f(0)=(0)^{2}=0

\displaystyle f(2)=(2)^{2}=4

\displaystyle f(4)=(4)^{2}=16

Putting it all together, the Left Riemann Sum is 

\displaystyle A=bh=2(0+4+16)=2(20)=40.

Example Question #2 : Integrals

Given a function \displaystyle y=\frac{1}{4}x+2, find the Left Riemann Sum of the function on the interval \displaystyle [0,4] divided into four sub-intervals. 

Possible Answers:

\displaystyle \frac{23}{2}

\displaystyle \frac{19}{2}

\displaystyle \frac{17}{2}

\displaystyle \frac{25}{2}

\displaystyle \frac{21}{2}

Correct answer:

\displaystyle \frac{19}{2}

Explanation:

In order to find the Riemann Sum of a given function, we need to approximate the area under the line or curve resulting from the function using rectangles spaced along equal sub-intervals of a given interval. Since we have an interval \displaystyle [0,4] divided into \displaystyle 4 sub-intervals, we'll be using rectangles with vertices at \displaystyle x=0,1,2,3,4

To approximate the area under the curve, we need to find the areas of each rectangle in the sub-intervals. We already know the width or base of each rectangle is \displaystyle b=1 because the rectangles are spaced \displaystyle 1 unit apart. Since we're looking for the Left Riemann Sum, we want to find the heights \displaystyle h of each rectangle by taking the values of each leftmost function value on each sub-interval, as follows:

\displaystyle f(0)=\frac{1}{4}(0)+2=0+2=2

\displaystyle f(1)=\frac{1}{4}(1)+2=\frac{1}{4}+\frac{8}{4}=\frac{9}{4}

\displaystyle f(2)=\frac{1}{4}(2)+2=\frac{1}{2}+\frac{4}{2}=\frac{5}{2}

\displaystyle f(3)=\frac{1}{4}(3)+2=\frac{3}{4}+\frac{8}{4}=\frac{11}{4}

Putting it all together, the Left Riemann Sum is 

\displaystyle A=bh=1(2+\frac{9}{4}+\frac{5}{2}+\frac{11}{4})=\frac{8}{4}+\frac{9}{4}+\frac{10}{4}+\frac{11}{4}=\frac{38}{4}=\frac{19}{2}

Example Question #2 : Riemann Sum: Left Evaluation

\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{3}^{3.9}(-9tan(10sin(5x)))dx\\&\text{Using }3\text{ intervals.}\end{align*}

Possible Answers:

\displaystyle 9.91

\displaystyle 94.16

\displaystyle 59.47

\displaystyle 3.81

Correct answer:

\displaystyle 9.91

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{3}^{3.9}(-9tan(10sin(5x)))dx\\&\text{So the interval is }[3,3.9]\text{ the subintervals have length }\frac{3.9-(3)}{3}=\frac{3}{10}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[3,\frac{33}{10},\frac{18}{5}]\\&\int_{3}^{3.9}(-9tan(10sin(5x)))dx=\frac{3}{10}[(-9tan(10sin(15)))+(-9tan(10sin(\frac{33}{2})))+(-9tan(10sin(18)))]\\&\int_{3}^{3.9}(-9tan(10sin(5x)))dx=9.91\end{align*}

Example Question #1 : Riemann Sum: Left Evaluation

\displaystyle \begin{align*}&\text{Calculate the Riemann sums integral approximation of :}\\&\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx\\&\text{Using left points over }4\text{ intervals.}\end{align*}

Possible Answers:

\displaystyle 17826.44

\displaystyle 343.87

\displaystyle 2200.80

\displaystyle 815.11

Correct answer:

\displaystyle 2200.80

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx\\&\text{So the interval is }[-2,11.6]\text{ the subintervals have length }\frac{11.6-(-2)}{4}=\frac{17}{5}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[-2,\frac{7}{5},\frac{24}{5},\frac{41}{5}]\\&\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx=\frac{17}{5}[(18\cdot 3^{(4tan(8))})+(\frac{18}{3^{(4tan(\frac{28}{5}))}})+(\frac{18}{3^{(4tan(\frac{96}{5}))}})+(\frac{18}{3^{(4tan(\frac{164}{5}))}})]\\&\int_{-2}^{11.6}(\frac{18}{3^{(4tan(4x))}})dx=2200.80\end{align*}

Example Question #3 : Numerical Approximations To Definite Integrals

\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx\\&\text{Using }3\text{ intervals.}\end{align*}

Possible Answers:

\displaystyle 6.25

\displaystyle 14.43

\displaystyle 41.86

\displaystyle 4.19

Correct answer:

\displaystyle 41.86

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx\\&\text{So the interval is }[-4,4.4]\text{ the subintervals have length }\frac{4.4-(-4)}{3}=\frac{14}{5}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[-4,-\frac{6}{5},\frac{8}{5}]\\&\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx=\frac{14}{5}[(6cos(11e^{(-8)}))+(6cos(11e^{(-\frac{12}{5})}))+(6cos(11e^{(\frac{16}{5})}))]\\&\int_{-4}^{4.4}(6cos(11e^{(2x)}))dx=41.86\end{align*}

Example Question #1 : Integrals

\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{0}^{12}(11sin(20sin(x)))dx\\&\text{Using }3\text{ intervals.}\end{align*}

Possible Answers:

\displaystyle 68.77

\displaystyle 11.66

\displaystyle 1.20

\displaystyle 4.86

Correct answer:

\displaystyle 11.66

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{0}^{12}(11sin(20sin(x)))dx\\&\text{So the interval is }[0,12]\text{ the subintervals have length }\frac{12-(0)}{3}=4\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[0,4,8]\\&\int_{0}^{12}(11sin(20sin(x)))dx=4[(0)+(11sin(20sin(4)))+(11sin(20sin(8)))]\\&\int_{0}^{12}(11sin(20sin(x)))dx=11.66\end{align*}

Example Question #5 : Numerical Approximations To Definite Integrals

\displaystyle \begin{align*}&\text{Using the method of left point Riemann sums approximate the integral:}\\&\int_{0}^{3}(-16sin(2x^{2}))dx\\&\text{Using }3\text{ intervals.}\end{align*}

Possible Answers:

\displaystyle -151.89

\displaystyle -10.85

\displaystyle -30.38

\displaystyle -249.10

Correct answer:

\displaystyle -30.38

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{0}^{3}(-16sin(2x^{2}))dx\\&\text{So the interval is }[0,3]\text{ the subintervals have length }\frac{3-(0)}{3}=1\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[0,1,2]\\&\int_{0}^{3}(-16sin(2x^{2}))dx=1[(0)+(-16sin(2))+(-16sin(8))]\\&\int_{0}^{3}(-16sin(2x^{2}))dx=-30.38\end{align*}

Example Question #111 : Ap Calculus Bc

\displaystyle \begin{align*}&\text{Using }3\text{ intervals, and the method of left point Riemann sums approximate the integral:}\\&\int_{4}^{12.7}(-17cos(20x^{2}))dx\end{align*}

Possible Answers:

\displaystyle 4.20

\displaystyle 91.80

\displaystyle 1.91

\displaystyle 16.39

Correct answer:

\displaystyle 16.39

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{4}^{12.7}(-17cos(20x^{2}))dx\\&\text{So the interval is }[4,12.7]\text{ the subintervals have length }\frac{12.7-(4)}{3}=\frac{29}{10}\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[4,\frac{69}{10},\frac{49}{5}]\\&\int_{4}^{12.7}(-17cos(20x^{2}))dx=\frac{29}{10}[(-17cos(320))+(-17cos(\frac{4761}{5}))+(-17cos(\frac{9604}{5}))]\\&\int_{4}^{12.7}(-17cos(20x^{2}))dx=16.39\end{align*}

Example Question #1 : Riemann Sum: Left Evaluation

\displaystyle \begin{align*}&\text{Using }3\text{ intervals, and the method of left point Riemann sums approximate the integral:}\\&\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx\end{align*}

Possible Answers:

\displaystyle -10.80

\displaystyle -0.31

\displaystyle -0.44

\displaystyle -3.00

Correct answer:

\displaystyle -3.00

Explanation:

\displaystyle \begin{align*}&\text{A Riemann sum integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))\\&\text{It is essentially a sum of n rectangles, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable heights :}f(x_i)\text{, which depend on the function value at }x_i\\&\text{We're asked to approximate}\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx\\&\text{So the interval is }[0,9]\text{ the subintervals have length }\frac{9-(0)}{3}=3\\&\text{and since we are using the *left*point of each interval, the x-values are:}\\&[0,3,6]\\&\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx=3[(-1)+(-\frac{4}{4^e^{(18)}})+(-\frac{4}{4^e^{(36)}})]\\&\int_{0}^{9}(-\frac{4}{4^e^{(6x)}})dx=-3.00\end{align*}

Learning Tools by Varsity Tutors