AP Calculus BC : Chain Rule and Implicit Differentiation

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Chain Rule And Implicit Differentiation

Find dy/dx by implicit differentiation:

\displaystyle x^3+x\tan^{-1}(y)=e^y

Possible Answers:

\displaystyle \frac{e^y+\tan^{-1}(y)-x^3}{x}

\displaystyle \frac{3x^2-\tan^{-1}(y)}{e^y-\frac{x}{1+y^2}}

\displaystyle \frac{e^y+3x^2}{\tan^{-1}(y)-\frac{x}{1+y^2}}

\displaystyle \frac{3x^2+\tan^{-1}(y)}{e^y-\frac{x}{1+y^2}}

\displaystyle \frac{e^y-\frac{x}{1+y^2}}{3x^2+\tan^{-1}(y)}

Correct answer:

\displaystyle \frac{3x^2+\tan^{-1}(y)}{e^y-\frac{x}{1+y^2}}

Explanation:

To find dy/dx we must take the derivative of the given function implicitly. Notice the term \displaystyle x\tan^{-1}(y) will require the use of the Product Rule, because it is a composition of two separate functions multiplied by each other. Every other term in the given function can be derived in a straight-forward manner, but this term tends to mess with many students. Remember to use the Product Rule:

Product Rule: \displaystyle \frac{d}{dx}[f(x)g(x)]=f(x)g'(x)+g(x)f'(x)

 

Now if we take the derivative of each component of the given problem statement:

\displaystyle 3x^2\frac{dx}{dx}+[(x)(\frac{1}{1+y^2}(\frac{dy}{dx}))+(1)(\frac{dx}{dx})(\tan^{-1}(y))]=e^y\frac{dy}{dx}

Notice that anytime we take the derivative of a term with involved we place a "dx/dx" next to it, but this is equal to "1".

So this now becomes:

Now if we place all the terms with a "dy/dx" onto one side and factor out we can solved for it:

\displaystyle 3x^2+\tan^{-1}(y)=e^y\frac{dy}{dx}-\frac{x}{1+y^2}\frac{dy}{dx}

\displaystyle 3x^2+\tan^{-1}(y)=\frac{dy}{dx}(e^y-\frac{x}{1+y^2})

\displaystyle \frac{dy}{dx}=\frac{3x^2+\tan^{-1}(y)}{e^y-\frac{x}{1+y^2}}

This is one of the answer choices.

 

Example Question #2 : Chain Rule And Implicit Differentiation

Find dx/dy by implicit differentiation:

\displaystyle x^3+x\tan^{-1}(y)=e^y

Possible Answers:

\displaystyle \frac{3x^2+e^y}{\tan^{-1}(y)-\frac{x}{1+y^2}}

\displaystyle \frac{e^y-\frac{x}{1+y^2}}{3x^2+\tan^{-1}(y)}

\displaystyle \frac{\frac{x}{1+y^2}+e^y}{5x^2-\tan^{-1}(y)}

\displaystyle \frac{\tan^{-1}(y)-\frac{x}{1+y^2}}{3x^2+e^y}

\displaystyle \frac{3x^2+\tan^{-1}(y)}{e^y-\frac{x}{1+y^2}}

Correct answer:

\displaystyle \frac{e^y-\frac{x}{1+y^2}}{3x^2+\tan^{-1}(y)}

Explanation:

To find dx/dy we must take the derivative of the given function implicitly. Notice the term \displaystyle x\tan^{-1}(y) will require the use of the Product Rule, because it is a composition of two separate functions multiplied by each other. Every other term in the given function can be derived in a straight-forward manner, but this term tends to mess with many students. Remember to use the Product Rule:

Product Rule: \displaystyle \frac{d}{dx}[f(x)g(x)]=f(x)g'(x)+g(x)f'(x)

 

Now if we take the derivative of each component of the given problem statement:

\displaystyle 3x^2\frac{dx}{dy}+[(x)(\frac{1}{1+y^2}(\frac{dy}{dy}))+(1)(\frac{dx}{dy})(\tan^{-1}(y))]=e^y\frac{dy}{dy}

Notice that anytime we take the derivative of a term with y involved we place a "dy/dy" next to it, but this is equal to "1".

So this now becomes:
\displaystyle 3x^2\frac{dx}{dy}+[\frac{x}{1+y^2}+\tan^{-1}(y)\frac{dx}{dy}]=e^y

Now if we place all the terms with a "dx/dy" onto one side and factor out we can solved for it:

\displaystyle 3x^2\frac{dx}{dy}+\tan^{-1}(y)\frac{dx}{dy}=e^y-\frac{x}{1+y^2}

\displaystyle \frac{dx}{dy}[3x^2+\tan^{-1}(y)]=e^y-\frac{x}{1+y^2}

\displaystyle \frac{dx}{dy}=\frac{e^y-\frac{x}{1+y^2}}{3x^2+\tan^{-1}(y)}

This is one of the answer choices.

Example Question #2 : Derivative At A Point

Use implicit differentiation to find the slope of the tangent line to \displaystyle \small y^3-lny=x^2 at the point \displaystyle \small (1,1).

Possible Answers:

\displaystyle \small 2

\displaystyle \small 0

\displaystyle \small -1

\displaystyle \small -2

\displaystyle \small 1

Correct answer:

\displaystyle \small 1

Explanation:

We must take the derivative \displaystyle \small \left(\small \frac{\mathrm{d} y}{\mathrm{d} x}\right) because that will give us the slope. On the left side we'll get 

\displaystyle \small 3y^2\frac{\mathrm{d}y }{\mathrm{d} x}-(1/y)\frac{\mathrm{d} y}{\mathrm{d} x}, and on the right side we'll get \displaystyle \small 2x.

We include the \displaystyle \small \frac{\mathrm{d} y}{\mathrm{d} x} on the left side because \displaystyle \small y is a function of \displaystyle \small x, so its derivative is unknown (hence we are trying to solve for it!).

Now we can factor out a \displaystyle \small \frac{\mathrm{d} y}{\mathrm{d} x} on the left side to get 

\displaystyle \small \small \frac{\mathrm{d} y}{\mathrm{d} x}(3y^2-1/y)=2x and divide by \displaystyle \small 3y^2-1/y in order to solve for \displaystyle \small \frac{\mathrm{d} y}{\mathrm{d} x}.

Doing this gives you

 \displaystyle \small \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x}{3y^2-1/y}.

We want to find the slope at \displaystyle \small (1,1), so we can sub in \displaystyle \small 1 for \displaystyle \small x and \displaystyle \small y

\displaystyle \small \small \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2(1)}{3(1)^2-1/(1)}=2/2=1.

Example Question #71 : Derivatives

\displaystyle g(x) = e ^{x^{2}+x}

Evaluate \displaystyle g '(3 ).

Possible Answers:

\displaystyle 7 e^{12}

\displaystyle e^{7}

\displaystyle 12 e^{12}

\displaystyle 12 e^{11}

\displaystyle 7 e^{9}

Correct answer:

\displaystyle 7 e^{12}

Explanation:

To find \displaystyle g'(x), substitute \displaystyle u = x ^{2} + x and use the chain rule:

\displaystyle g(x) = e ^{x^{2}+x}

\displaystyle g'(x) = \frac{\mathrm{d} }{\mathrm{d} x} e ^{x^{2}+x}

\displaystyle = \frac{\mathrm{d} }{\mathrm{d} x} e ^{u}

\displaystyle = \frac{\mathrm{d}u }{\mathrm{d} x} \cdot \frac{\mathrm{d} }{\mathrm{d} u}e ^{u}

\displaystyle = \frac{\mathrm{d}u }{\mathrm{d} x} \cdot e ^{u}

\displaystyle = \frac{\mathrm{d} }{\mathrm{d} x}\left ( x ^{2} + x \right ) \cdot \frac{\mathrm{d} }{\mathrm{d} u}e ^{u}

\displaystyle = \left ( 2x + 1 \right ) \cdot e ^{u}

\displaystyle = \left ( 2x + 1 \right ) \cdot e ^{ x ^{2} + x}

 

\displaystyle g'(x)= \left ( 2x + 1 \right ) e ^{ x ^{2} + x}

Plug in 3:

\displaystyle g'(3)= \left ( 2 \cdot 3 + 1 \right ) \cdot e ^{ 3 ^{2} + 3}

\displaystyle = \left ( 6 + 1 \right ) \cdot e ^{ 9+ 3} =7e ^{ 12}

Example Question #72 : Derivatives

\displaystyle g (x) = \frac{1}{4x - 7}

Evaluate \displaystyle g ' (1 ).

Possible Answers:

\displaystyle -\frac{4}{3}

\displaystyle - \frac{4}{9}

Undefined

\displaystyle \frac{4}{3}

\displaystyle \frac{4}{9}

Correct answer:

\displaystyle - \frac{4}{9}

Explanation:

To find \displaystyle g'(x), substitute \displaystyle u =4x - 7 and use the chain rule: 

\displaystyle g (x) = \frac{1}{4x - 7}

\displaystyle g '(x) = \frac{\mathrm{d} }{\mathrm{d} x}\cdot \frac{1}{4x - 7}

\displaystyle = \frac{\mathrm{d} }{\mathrm{d} x}\cdot \frac{1}{u}

\displaystyle = \frac{\mathrm{d} u}{\mathrm{d} x}\cdot \frac{\mathrm{d} }{\mathrm{d} u} \frac{1}{u}

\displaystyle = \frac{\mathrm{d} }{\mathrm{d} x} (4x-7) \cdot \frac{\mathrm{d} }{\mathrm{d} u} u ^{-1}

\displaystyle =4 \cdot (-1 ) u ^{-1-1}

\displaystyle =-4 u ^{-2} = - \frac{4}{u^{2}}= - \frac{4}{(4x-7)^{2}}

So

\displaystyle g'(x)= - \frac{4}{(4x-7)^{2}}

and

\displaystyle g'(1)= - \frac{4}{(4 \cdot 1 -7)^{2}}

\displaystyle = - \frac{4}{(4 -7)^{2}}

\displaystyle = - \frac{4}{(-3)^{2}} = - \frac{4}{9}

Example Question #1 : Chain Rule And Implicit Differentiation

\displaystyle g (x) = \tan \left ( x +\frac{ \pi }{4}\right )

Evaluate .

Possible Answers:

\displaystyle \sqrt{2}

\displaystyle -\sqrt{2}

\displaystyle 2

\displaystyle -2

Undefined

Correct answer:

\displaystyle 2

Explanation:

To find \displaystyle g'(x), substitute \displaystyle u = x +\frac{ \pi }{4} and use the chain rule:

\displaystyle g (x) = \tan \left ( x +\frac{ \pi }{4}\right )

\displaystyle g' (x) = \frac{\mathrm{d} }{\mathrm{d} x}\tan \left ( x +\frac{ \pi }{4}\right )

\displaystyle g' (x) = \frac{\mathrm{d} }{\mathrm{d} x}\tan u

\displaystyle =\frac{\mathrm{d} u}{\mathrm{d} x} \cdot \frac{\mathrm{d} }{\mathrm{d} u} \tan u

\displaystyle =\frac{\mathrm{d} }{\mathrm{d} x} \left ( x +\frac{ \pi }{4} \right )\cdot \frac{\mathrm{d} }{\mathrm{d} u} \tan u

\displaystyle =\frac{\mathrm{d} }{\mathrm{d} x} \left ( x +\frac{ \pi }{4} \right ) \cdot \sec ^{2} u

\displaystyle =1 \cdot \sec ^{2}\left ( x +\frac{ \pi }{4}\right ) = \sec ^{2}\left ( x +\frac{ \pi }{4}\right )

 

 \displaystyle g'(x) = \sec ^{2}\left ( x +\frac{ \pi }{4}\right )

\displaystyle g'(\pi ) = \sec ^{2}\left ( \pi +\frac{ \pi }{4}\right )

\displaystyle g'(\pi ) = \sec ^{2}\frac{ 5 \pi }{4}

\displaystyle = \left ( - \sqrt{2 }\right )^{2} = 2

Example Question #2 : Chain Rule And Implicit Differentiation

\displaystyle g (x) = 3 ^{x^{2}}

Evaluate \displaystyle g ' (-1 ).

Possible Answers:

\displaystyle 9

\displaystyle 0

\displaystyle -6 \ln 3

\displaystyle -\frac{3 \ln 3}{2}

\displaystyle -2

Correct answer:

\displaystyle -6 \ln 3

Explanation:

To find \displaystyle g'(x), substitute \displaystyle u = x ^{2} and use the chain rule: 

\displaystyle g (x) = 3 ^{x^{2}}

\displaystyle g ' (x) = \frac{\mathrm{d} }{\mathrm{d} x} 3 ^{x^{2}}

\displaystyle = \frac{\mathrm{d} }{\mathrm{d} x} 3 ^{u}

\displaystyle = \frac{\mathrm{d}u }{\mathrm{d} x} \cdot \frac{\mathrm{d} }{\mathrm{d} u} 3 ^{u}

\displaystyle = \frac{\mathrm{d}}{\mathrm{d} x} x^{2} \cdot \frac{\mathrm{d} }{\mathrm{d} u} 3 ^{u}

\displaystyle = 2x \cdot \ln 3 \cdot 3 ^{u}

\displaystyle = 2x \ln 3 \cdot 3 ^{x^2}

So \displaystyle g'(x)= 2x \ln 3 \cdot 3 ^{x^2}

and

\displaystyle g'(-1)= 2(-1) \ln 3 \cdot 3 ^{(-1)^2}

\displaystyle = -2 \ln 3 \cdot 3 ^{1} = -2 \ln 3 \cdot 3 = -6 \ln 3

Example Question #74 : Derivatives

\displaystyle g \left (x \right )= \cos \left ( \pi x^{2}\right )

Evaluate \displaystyle g ' \left ( \frac{1}{2} \right ).

Possible Answers:

\displaystyle \pi \sqrt{2}

\displaystyle - \frac{ \pi \sqrt{2}}{2}

\displaystyle - \pi \sqrt{2}

\displaystyle \frac{ \pi \sqrt{2}}{2}

\displaystyle - \frac{ \sqrt{2}}{2 \pi}

Correct answer:

\displaystyle - \frac{ \pi \sqrt{2}}{2}

Explanation:

To find \displaystyle g'(x), substitute \displaystyle u = \pi x^{2} and use the chain rule:

\displaystyle g \left (x \right )= \cos \left ( \pi x^{2}\right )

\displaystyle g'(x)= \frac{\mathrm{d} }{\mathrm{d} x} \cos \left ( \pi x^{2}\right )

\displaystyle = \frac{\mathrm{d} }{\mathrm{d} x} \cos u

\displaystyle =\frac{\mathrm{d} u}{\mathrm{d} x} \cdot \frac{\mathrm{d} }{\mathrm{d} u} \cos u

\displaystyle =\frac{\mathrm{d} }{\mathrm{d} x} \pi x^{2} \cdot \frac{\mathrm{d} }{\mathrm{d} u} \cos u

\displaystyle = \pi \cdot 2 x\cdot \left ( - \sin u \right )

So 

and 

\displaystyle g ' \left ( \frac{1}{2} \right )=-2 \pi\cdot \frac{1}{2} \sin \left [\pi \cdot \left ( \frac{1}{2} \right )^{2} \right ]

\displaystyle =- \pi \sin \left ( \frac{\pi}{4} \right )

\displaystyle =- \pi \cdot \frac{\sqrt{2}}{2} = - \frac{ \pi \sqrt{2}}{2}

Example Question #2 : Chain Rule And Implicit Differentiation

\displaystyle \frac{d}{dx} \ln(3x-7)

Possible Answers:

\displaystyle 3 \ln (3x-7)

\displaystyle \frac{1}{3x-7}

\displaystyle \frac{3}{3x-7}

\displaystyle \ln(3)

Correct answer:

\displaystyle \frac{3}{3x-7}

Explanation:

Consider this function a composition of two functions, f(g(x)). In this case, f(x) is ln(x) and g(x) is 3x - 7. The derivative of ln(x) is 1/x, and the derivative of 3x - 7 is 3. The derivative is then \displaystyle \frac{1}{3x-7} \cdot 3 = \frac{3}{3x-7}

Example Question #3 : Chain Rule And Implicit Differentiation

\displaystyle \frac{d}{dx } 2 \sin (x^2 )

Possible Answers:

\displaystyle -4x \cdot \cos(x^2)

\displaystyle 4x \cdot \cos(x^2)

\displaystyle 2x \cdot \cos(x^2)

\displaystyle 2\cdot \cos(x^2)

Correct answer:

\displaystyle 4x \cdot \cos(x^2)

Explanation:

Consider this function a composition of two functions, f(g(x)). In this case, \displaystyle f(x) =2 \sin (x) and \displaystyle g(x) = x^2. According to the chain rule, \displaystyle f(g(x)) ' = f'(g(x))\cdot g'(x). Here, \displaystyle f'(g(x)) = 2 \cos (x^2 ) and \displaystyle g'(x) = 2x, so the derivative is \displaystyle 2 \cos (x^2 ) \cdot 2x = 4x \cdot \cos(x^2)

Learning Tools by Varsity Tutors