All AP Biology Resources
Example Questions
Example Question #431 : Cellular Biology
Urine is confined to the human bladder in part due to the structure of junctions that connect the cells lining the bladder. These junctions form a barrier that prevents the exchange of ions and solutes between the blood and urine. What is the likely identity of these junctions?
Gap junctions
Tight junctions
Plasmodesmata
Desmosomes
Tight junctions
Tight junctions commonly line organs such as the urinary bladder, as they prevent unwanted fluid from leaking into or out of these organs. They are most notable for their barrier function: they are almost completely impermeable to fluid.
Though desmosomes also join cells together, they are more commonly found connecting cells that are subject to mechanical stress, such as muscles or the outer layer of skin. They are comparable to a button or a rivet, and do not connect cells as tightly to one another as tight junctions do. Gap junctions are essentially channels between cells that enable the rapid transport of ions and other solutes between the cytoplasm of neighboring cells; they would not help keep urine within the urinary bladder. Plasmodesmata are only found in plants (they are analogous to gap junctions) and would therefore have no business forming a human bladder.
Example Question #1 : Understanding Types Of Cellular Junctions
What type of cell junction would most likely be found in the intestinal tract?
Desmosomes
All of these would be found in the intestinal tract
Tight junction
Plasmodesmata
Gap junctions
Tight junction
Within the digestive tract, it is important for nutrients and toxins to remain contained within the organs to allow for proper absorption. Furthermore, the acidity and basicity of various regions of the digestive tract must be kept partitioned from the rest of the body. Tight junctions are found between most cells of the digestive tract. This type of cell junction prevents movement of material between cells, requiring it to actually move into cells via diffusion or active transport in order to pass through tissue.
Gap junctions are intercellular junctions that connect the cytoplasm of adjacent cells and are particularly important for signaling. Desmosomes are structures specialized for cell-to-cell adhesion and force transmission. Plasmodesmata are transport and communication channels in plant cells, analogous to gap junctions.
Example Question #1 : Understanding Types Of Cellular Junctions
Which type of cellular junction is prominent in cardiac myocytes and allows for a unified contraction of the heart?
Plasmodesmata
Desmosomes
Tight junctions
Gap junctions
Gap junctions
Cardiac myocytes (muscle cells) need to be able to contract in unison in order to ensure proper pumping of blood. This is accomplished by specialized junctions called gap junctions that allow cells to communicate with one another very quickly. These junctions join the cytoplasms of adjacent cells, allowing ions to flow between them. When one cardiac cell is depolarized, the gap junctions found in intercalated discs allow the depolarization to jump from cell to cell.
Plasmodesmata are structurally analogous to gap junctions, but are located in plant cells.
Example Question #5 : Understanding Types Of Cellular Junctions
Why are gap junctions crucial to the anatomy and physiology of the heart?
They maintain a gap between cardiac muscle cells, preventing friction as the cells contract and relax
They maintain a gap between the cardiac muscle cells, preventing crush injuries to the coronary arteries during regular contraction and relaxation
They allow fast passage of ions from cell to cell, enabling the cells of the heart chambers to contract almost simultaneously
They allow passage of glucose and oxygen into the cardiac cells, providing energy sources to cells that are not well perfused by coronary arteries
They allow fast passage of ions from cell to cell, enabling the cells of the heart chambers to contract almost simultaneously
Gap junctions are formed by connexons—rings of proteins that spans the membranes of two adjacent cells. The ring surrounds a pore that allows ions, among other substances, to pass between the cells uninterrupted. The result is a quick transmission of the electrochemical signal for cardiac muscle cell contraction, so that the cells contract essentially together. Gap junctions can also be found in numerous other tissue types, but not in skeletal muscle.
Example Question #1 : Understanding Types Of Cellular Junctions
Which of these correctly matches the cellular junction with its function?
Desmosomes are connections that directly connect the cytoplasm of two cells
Desmosomes are branched network of proteins that are impermeable to fluids
Tight junctions are random, spot attachments between cells that prevent tearing of tissue
Gap junctions are connections that directly connect the cytoplasm of two cells
Gap junctions prevent the flow of ions and water from one part of the body to another
Gap junctions are connections that directly connect the cytoplasm of two cells
Gap junctions allow the flow of water and ions. They are seen in the heart muscle cells, to allow quick electrical conduction from one cell to another, which is observed as a wavelike contraction of the heart. Tight junctions are networks of spot attachments that are impermeable to fluids. Desmosomes are random, spot attachments that are responsible for cell-cell adhesion.
Example Question #3 : Understanding Types Of Cellular Junctions
Cellular junctions allowing cytoplasm and ion exchange between adjacent cells are known as __________?
occluding junctions
gap junctions
tight junctions
hemidesmosomes
desmosomes
gap junctions
Gap junctions form pores connecting neighboring cells and allowing the mixture of cytoplasm and small solutes including ions. Desmosomes are specialized for cell-cell adhesion, and hemidesmosomes are specialized for cell-extracellular matrix adhesion. Tight junctions (occluding junctions) form a seal across a layer of cells and is virtually impermeable.
Example Question #1 : Understanding Types Of Cellular Junctions
Which of the following are able to pass through a gap junction from one cell to another?
Ions
Genetic material
Polysaccharides
Enzymes
Ions
Gap junctions are protein channels that span the intercellular space that connect two cells. They allow cytoplasmic exchange in animal cells. The diameter of gap junctions limits what is able to travel though them from one cell to another. Ions, amino acids, and small molecules can flow through gap junctions; however, proteins, polysaccharides, and nucleic acids cannot. Gap junctions allow the transfer of small molecules to direct communication and cellular activities.
Example Question #9 : Understanding Types Of Cellular Junctions
Which of the following choices identifies the plant structure that corresponds to gap junctions in animal cells?
Membrane pore
Synapse
Plasmodesmata
Pilus
Plasmodesmata
Plasmodesmata are the plant structures that are analogous to gap junctions in animal cells. Plasmodesmata are protein channels between the cell walls of plant cells. They facilitate communication and the transport of solutes and small proteins between plant cells.
Example Question #2 : Understanding Types Of Cellular Junctions
What type of cellular junctions would form between two cells attached to each other that would need to exchange products?
Gap junctions
Desmosomes
Hemidesmosome
Tight junctions
None of these
Gap junctions
Gap junctions are cellular junctions that attach two or more cells together but also allow the exchange of products through an opening. Tight junctions, desmosomes, and hemidesmosomes do not allow direct communication among cells.
Example Question #431 : Cellular Biology
Which process involved in cellular respiration is defined as the movement of solutes across a plasma membrane from a region of higher solute concentration to a region of lower solute concentration with the aid of proteins?
Facilitated diffusion
Bulk flow
Plasmolysis
Osmosis
Active transport
Facilitated diffusion
The answer to this question is facilitated diffusion.
Facilitated diffusion involves the movement down a concentration across a plasma membrane without ATP. Bulk flow is a completely different process and active transport is the movement of ions or molecules across a cell membrane into a region of higher concentration, assisted by enzymes and requiring energy. Active transport needs an input of energy, unlike facilitated diffusion. Osmosis is the simple diffusion of water.
Certified Tutor