Algebra II : Quadratic Roots

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #142 : Quadratic Equations And Inequalities

Give the solution set of the equation \displaystyle x ^{2} + 4x -17 = 0.

Possible Answers:

\displaystyle x = -2 \pm i \sqrt{13}

\displaystyle x = 2 \pm \sqrt{13}

\displaystyle x = -2 \pm \sqrt{21}

\displaystyle x = 2 \pm i \sqrt{13}

\displaystyle x = -2 \pm i \sqrt{21}

Correct answer:

\displaystyle x = -2 \pm \sqrt{21}

Explanation:

Using the quadratic formula, with \displaystyle a = 1, b = 4, c = -17:

\displaystyle x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}

\displaystyle x = \frac{-(4) \pm \sqrt{(4)^{2}-4 (1)(-17)}}{2 (1)}

\displaystyle x = \frac{-4 \pm \sqrt{16-(-68)}}{2 }

\displaystyle x = \frac{-4 \pm \sqrt{84}}{2 }

\displaystyle x = \frac{-4 \pm \sqrt{4} \cdot \sqrt{21}}{2 }

\displaystyle x = \frac{-4 \pm 2 \sqrt{21}}{2 }

\displaystyle x = -2 \pm \sqrt{21}

Example Question #143 : Quadratic Equations And Inequalities

Give the solution set of the equation \displaystyle x ^{2} + 4x + 13= 0 .

Possible Answers:

\displaystyle x = 2 \pm 3 i

\displaystyle x = -2 \pm 3 i

\displaystyle x = -3 \pm 2i

Correct answer:

\displaystyle x = -2 \pm 3 i

Explanation:

Using the quadratic formula, with \displaystyle a = 1, b = 4, c = 13:

\displaystyle x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}

\displaystyle x = \frac{-(4) \pm \sqrt{(4)^{2}-4 (1)(13)}}{2 (1)}

\displaystyle x = \frac{-4 \pm \sqrt{16-52}}{2 }

\displaystyle x = \frac{-4 \pm \sqrt{-36}}{2 }

\displaystyle x = \frac{-4 \pm i \sqrt{36}}{2 }

\displaystyle x = \frac{-4 \pm 6 i }{2 }

\displaystyle x = -2 \pm 3 i

Example Question #2 : Quadratic Roots

Write a quadratic equation in the form \displaystyle ax^2+bx+c=0 with 2 and -10 as its roots.

Possible Answers:

\displaystyle x^2+2x-10=0

\displaystyle x^2+8x-10=0

\displaystyle x^2+10x-2=0

\displaystyle x^2+12x-20=0

\displaystyle x^2+8x-20=0

Correct answer:

\displaystyle x^2+8x-20=0

Explanation:

Write in the form \displaystyle (x-p)(x-q)=0 where p and q are the roots.

Substitute in the roots:

\displaystyle (x-2)(x-(-10))=0

Simplify:

\displaystyle (x-2)(x+10)=0

Use FOIL and simplify to get

\displaystyle x^2+8x-20=0.

Example Question #1 : Quadratic Roots

Find the roots of the following quadratic polynomial:

\displaystyle 6x^2+2x-28

Possible Answers:

This quadratic has no real roots.

\displaystyle \frac{3}{14},1

\displaystyle -4, \frac{7}{6}

\displaystyle \frac{3}{4},-\frac{2}7{}

\displaystyle 2, -\frac{7}{3}

Correct answer:

\displaystyle 2, -\frac{7}{3}

Explanation:

To find the roots of this equation, we need to find which values of \displaystyle x make the polynomial equal zero; we do this by factoring. Factoring is a lot of "guess and check" work, but we can figure some things out. If our binomials are in the form \displaystyle (ax+b)(cx+d), we know \displaystyle a times \displaystyle c will be \displaystyle 6 and \displaystyle b times \displaystyle d will be \displaystyle -28. With that in mind, we can factor our polynomial to 

\displaystyle (2x-4)(3x+7)

To find the roots, we need to find the \displaystyle x-values that make each of our binomials equal zero. For the first one it is \displaystyle 2, and for the second it is \displaystyle -\frac{7}{3}, so our roots are \displaystyle 2, -\frac{7}{3}.

Example Question #143 : Understanding Quadratic Equations

Write a quadratic equation in the form \displaystyle ax^{2}+bx+c=0 that has \displaystyle 4 and \displaystyle -8 as its roots.

Possible Answers:

\displaystyle x^{2}+12x+32=0

\displaystyle x^{2}-4x-32=0

\displaystyle x^{2}+8x+1=0

\displaystyle x^{2}+4x-32=0

\displaystyle x^{2}-12x+32=0

Correct answer:

\displaystyle x^{2}+4x-32=0

Explanation:

1. Write the equation in the form \displaystyle (x-a)(x-b)=0 where \displaystyle a and \displaystyle b are the given roots.

\displaystyle (x-4)(x-(-8))=0

\displaystyle (x-4)(x+8)=0

 

2. Simplify using FOIL method.

\displaystyle x^{2}+4x-32=0

Example Question #1 : Quadratic Roots

Give the solution set of the following equation:

\displaystyle x^{2}+3x+3=0

Possible Answers:

\displaystyle x=\frac{-3\pm i\sqrt{3}}{2}

\displaystyle x=\frac{3\pm i\sqrt{2}}{2}

\displaystyle x=\frac{-6\pm i\sqrt{-3}}{2}

\displaystyle x={-3\pm i\sqrt{3}}

\displaystyle x=\frac{3\pm \sqrt{3}}{2}

Correct answer:

\displaystyle x=\frac{-3\pm i\sqrt{3}}{2}

Explanation:

Use the quadratic formula with \displaystyle a=1\displaystyle b=3 and \displaystyle c=3:

\displaystyle x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}

\displaystyle x=\frac{-3\pm \sqrt{3^{2}-4(1)(3)}}{2(1)}

\displaystyle x=\frac{-3\pm \sqrt{9-12}}{2}

\displaystyle x=\frac{-3\pm \sqrt{-3}}{2}

\displaystyle x=\frac{-3\pm i\sqrt{3}}{2}

 

 

Example Question #1 : Quadratic Roots

Give the solution set of the following equation:

\displaystyle 10x^{2}+4x+5=0

Possible Answers:

\displaystyle x=\frac{-4\pm \sqrt {184}}{10}

\displaystyle x=\frac{-4\pm i\sqrt {46}}{20}

\displaystyle x=\frac{-2\pm \sqrt {46}}{20}

\displaystyle x=\frac{-2\pm i\sqrt {46}}{10}

\displaystyle x=\frac{-4\pm i\sqrt {46}}{10}

Correct answer:

\displaystyle x=\frac{-2\pm i\sqrt {46}}{10}

Explanation:

Use the quadratic formula with \displaystyle a=10\displaystyle b=4, and \displaystyle c=5:

\displaystyle x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}

\displaystyle x=\frac{-4\pm \sqrt{4^{2}-4(10)(5)}}{2(10)}

\displaystyle x=\frac{-4\pm \sqrt{16-200}}{20}

\displaystyle x=\frac{-4\pm \sqrt{-184}}{20}

\displaystyle x=\frac{-4\pm \sqrt{46\cdot 4\cdot -1}}{20}

\displaystyle x=\frac{-4\pm 2i\sqrt{46}}{20}

\displaystyle x=\frac{-2\pm i\sqrt{46}}{10}

Example Question #144 : Understanding Quadratic Equations

Let

\displaystyle (x-3)^2 = 36

Determine the value of x.

Possible Answers:

\displaystyle x=6,-6

\displaystyle x=6

\displaystyle x=-3, 9

\displaystyle x=9

Correct answer:

\displaystyle x=-3, 9

Explanation:

To solve for x we need to isolate x. We can do this by taking the square root of each side and then doing algebraic operations.

\displaystyle (x-3)^2=36

\displaystyle \sqrt(x-3)^2=\sqrt36

\displaystyle x-3=\pm6

Now we need to separate our equation in two and solve for each x.

\displaystyle x-3=6     or     \displaystyle x-3=-6

\displaystyle x=9                     \displaystyle x=-3

Example Question #1 : Quadratic Roots

Solve for \displaystyle x:

\displaystyle (x-3)^{2}=36

Possible Answers:

\displaystyle (3,-9)

\displaystyle (9,3)

None of the other answers

\displaystyle (9,-3)

\displaystyle (6,-6)

Correct answer:

\displaystyle (9,-3)

Explanation:

To solve this equation, you must first eliminate the exponent from the \displaystyle (x-3) by taking the square root of both sides: 

\displaystyle \sqrt{(x-3)^{2}}=\sqrt{36}

Since the square root of 36 could be either \displaystyle 6 or \displaystyle -6, there must be 2 values of \displaystyle x. So, solve for

\displaystyle x-3=-6

and

\displaystyle x-3=6

to get solutions of \displaystyle (9,-3).

Example Question #1 : Quadratic Roots

Find the roots of \displaystyle y = x^{2} + 9x + 14

Possible Answers:

\displaystyle x = 4, x = 5

\displaystyle x=0

\displaystyle x = 7, x = 2

\displaystyle x = -7, x = -2

\displaystyle x = 14, x = 1

Correct answer:

\displaystyle x = -7, x = -2

Explanation:

When we factor, we are looking for two number that multiply to the constant, \displaystyle 14, and add to the middle term, \displaystyle 9. Looking through the factors of \displaystyle 14, we can find those factors to be \displaystyle 7 and \displaystyle 2.

Thus, we have the factors: 

\displaystyle (x + 2)(x+7).

To solve for the solutions, set each of these factors equal to zero.

Thus, we get \displaystyle x + 2 = 0, or \displaystyle x = -2.

Our second solution is, \displaystyle x + 7 =0, or \displaystyle x = -7

Learning Tools by Varsity Tutors