Algebra II : Number Lines

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Number Lines

For all negative values of \displaystyle x, where \displaystyle y = |x|, what is the correct order, from least to greatest, for the following expressions? 

a) \displaystyle y^{2}-x  

b) \displaystyle x^{2}+x   

c) \displaystyle x^{2}-y^{2}+y  

Possible Answers:

a,b,c

c,b,a

a,c,b

b,a,c

c,a,b

Correct answer:

c,b,a

Explanation:

The easiest approach to this problem is to pick a value for X, and plug it in.

If we use \displaystyle x=-3, then then expression

a) \displaystyle 3^2--3=9+3=12.

b)\displaystyle (-3)^2+-3=9-3=6

c)\displaystyle (-3)^2-(3)^2+3=9-9+3=3

The order from least to greatest is C,B,A

Example Question #1 : Number Lines

Put the following numbers in order from least to greatest:

\displaystyle 2i^2 , 3i^2, 4i^2, 5i^2

Possible Answers:

\displaystyle 5i^2, 4i^2, 3i^2, 2i^2

\displaystyle 2i^2, 3i^2, 4i^2, 5i^2

\displaystyle 2i^2 , 3i^2, 5i^2

\displaystyle 5i^2, 3i^2, 2i^2, 4i^2

Correct answer:

\displaystyle 5i^2, 4i^2, 3i^2, 2i^2

Explanation:

\displaystyle i^2 = -1, remembering that, then the most negative number is first, the least negative is last. 

Therefore,

\displaystyle 2i^2 , 3i^2, 4i^2, 5i^2=-2,-3,-4,-5.

Thus when we put them in order we get,

\displaystyle 5i^2,4i^2, 3i^2, 2i^2

Example Question #2 : Number Lines

What are integers?

Possible Answers:

Positive whole numbers only.

Negative whole numbers only.

Just \displaystyle 0.

Positive, negative whole numbers and \displaystyle 0.

Any number that is real.

Correct answer:

Positive, negative whole numbers and \displaystyle 0.

Explanation:

Integers are values you would find on a number line.

They are whole numbers that exist in positive and negative values. What divides them is the number \displaystyle 0.

So integers are essentially positive, negative whole numbers and \displaystyle 0.

Example Question #5145 : Algebra Ii

Which of the following numbers is between \displaystyle -1 and \displaystyle \frac{1}{2}?

Possible Answers:

\displaystyle i^4

\displaystyle log(0)

\displaystyle 150\%

\displaystyle \sqrt{\frac{1}{9}}

Correct answer:

\displaystyle \sqrt{\frac{1}{9}}

Explanation:

The answer will lie in the range between negative one and a half.  Convert all the values given to integer or fractional form.

\displaystyle 150\%=\frac{3}{2}

\displaystyle i^4= i^2\cdot i^2 = -1\cdot -1=1

\displaystyle \sqrt{\frac{1}{9}}= \frac{1}{3}

\displaystyle log(0) is undefined.

Of all the possible answers, \displaystyle \sqrt{\frac{1}{9}} will fall between the given range.

The answer is:  \displaystyle \sqrt{\frac{1}{9}}

Learning Tools by Varsity Tutors