Algebra II : Negative Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #101 : Understanding Exponents

Evaluate:  \displaystyle 7^{-1}-2(3)^{-1}

Possible Answers:

\displaystyle -\frac{1}{42}

\displaystyle -\frac{3}{7}

\displaystyle -\frac{11}{21}

\displaystyle -\frac{17}{21}

\displaystyle -\frac{1}{21}

Correct answer:

\displaystyle -\frac{11}{21}

Explanation:

In order to evaluate this, we will first need to rewrite the negative exponents  fractions.

\displaystyle x^{-b} = \frac{1}{x^b}

Rewrite each term.

\displaystyle 7^{-1}-2(3)^{-1} = \frac{1}{7} - 2(\frac{1}{3}) = \frac{1}{7}-\frac{2}{3}

Determine the least common denominator by multiplying both denominators together.

\displaystyle \frac{1}{7}-\frac{2}{3} = \frac{1(3)}{7(3)}-\frac{2(7)}{3(7)} = \frac{3}{21}-\frac{14}{21}

Subtract the numerator.

The answer is:  \displaystyle -\frac{11}{21}

Example Question #102 : Understanding Exponents

Simplify:  \displaystyle 2(3^{-2})-3(2^{-2})+6^{-1}

Possible Answers:

\displaystyle \frac{7}{6}

\displaystyle -\frac{27}{12}

\displaystyle \frac{41}{36}

\displaystyle -\frac{13}{36}

\displaystyle -\frac{13}{3}

Correct answer:

\displaystyle -\frac{13}{36}

Explanation:

Rewrite all negative exponential into fractions.

\displaystyle x^{-y} =\frac{1}{x^y}

\displaystyle 2(3^{-2})-3(2^{-2})+6^{-1} = 2(\frac{1}{3^2})-3(\frac{1}{2^2})+\frac{1}{6}

Simplify the terms.

\displaystyle \frac{2}{9}-\frac{3}{4}+\frac{1}{6}

Determine the least common factor by writing out the multiples of each denominator.

\displaystyle 9-[9,18,27,36]

\displaystyle 4-[4,8,12,16,20,24,28,32,36]

\displaystyle 6-[6,12,18,24,30,36]

Convert each fraction to a common denominator of 36.

\displaystyle \frac{2}{9}-\frac{3}{4}+\frac{1}{6}=\frac{2(4)}{9(4)}-\frac{3(9)}{4(9)}+\frac{1(6)}{6(6)}

Simplify the fractions.

\displaystyle \frac{8}{36}-\frac{27}{36}+\frac{6}{36} = -\frac{13}{36}

The answer is:  \displaystyle -\frac{13}{36}

Example Question #103 : Understanding Exponents

Simplify:  \displaystyle \frac{(3^{-2})^{-1}}{2^{-1}}

Possible Answers:

\displaystyle \frac{2}{9}

\displaystyle 18

\displaystyle \frac{1}{18}

\displaystyle \frac{1}{9}

\displaystyle \frac{1}{36}

Correct answer:

\displaystyle 18

Explanation:

Simplify the numerator by product of exponents.

\displaystyle \frac{(3^{-2})^{-1}}{2^{-1}}=\frac{3^2}{2^{-1}}= \frac{9}{2^{-1}}

Rewrite the negative exponent as a fraction.

\displaystyle x^{-y}=\frac{1}{x^y}

\displaystyle \frac{9}{2^{-1}} = \frac{9}{\frac{1}{2}}= 9\div \frac{1}{2}

Convert the division sign to a multiplication sign and take the reciprocal of the second term.

\displaystyle 9\times \frac{2}{1} =18

The answer is:  \displaystyle 18

Example Question #104 : Understanding Exponents

Solve:  \displaystyle (\frac{1}{3})^{-3}

Possible Answers:

\displaystyle -\frac{1}{9}

\displaystyle \frac{1}{9}

\displaystyle 27

\displaystyle \frac{1}{27}

\displaystyle -27

Correct answer:

\displaystyle 27

Explanation:

In order to evaluate this expression, we will need to rewrite the negative exponent as a fraction.

\displaystyle x^{-B}= \frac{1}{x^B}

\displaystyle (\frac{1}{3})^{-3} =\frac{1}{(\frac{1}{3})^3} = \frac{1}{(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})}

Simplify the denominator.

\displaystyle \frac{1}{\frac{1}{27}} = 1\div \frac{1}{27} = 1\times \frac{27}{1} = 27

The answer is:  \displaystyle 27

Example Question #105 : Understanding Exponents

Evaluate:  \displaystyle \frac{2^{-4}}{3^{-3}}

Possible Answers:

\displaystyle \frac{1}{432}

\displaystyle \frac{8}{27}

\displaystyle \frac{9}{8}

\displaystyle \frac{27}{16}

\displaystyle \frac{16}{27}

Correct answer:

\displaystyle \frac{27}{16}

Explanation:

In order to simplify this expression, we will need to reconvert the negative exponents to fractions.

\displaystyle x^{-y} = \frac{1}{x^y}

Rewrite the fraction.

\displaystyle \frac{2^{-4}}{3^{-3}} = \frac{\frac{1}{2^4}}{\frac{1}{3^3}} = \frac{\frac{1}{16}}{\frac{1}{27}}

Rewrite the complex fraction using a division sign.

\displaystyle \frac{\frac{1}{16}}{\frac{1}{27}} = \frac{1}{16}\div \frac{1}{27} = \frac{1}{16}\times \frac{27} {1}

The answer is:  \displaystyle \frac{27}{16}

Example Question #106 : Understanding Exponents

Evaluate:  \displaystyle \frac{4^{-2}}{(\frac{1}{2})^{-3}}

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle 64

\displaystyle 128

\displaystyle \frac{1}{128}

\displaystyle \frac{1}{64}

Correct answer:

\displaystyle \frac{1}{128}

Explanation:

We will need to convert both negative exponents into fractions.

\displaystyle x^{-a} =\frac{1}{x^a}

The expression becomes: 

\displaystyle \frac{4^{-2}}{(\frac{1}{2})^{-3}}=\frac{\frac{1}{4^{2}}}{\frac{1}{(\frac{1}{2})^{3}}}

Evaluate each term.

\displaystyle \frac{1}{4^{2}} =\frac{1}{16}

\displaystyle \frac{1}{(\frac{1}{2})^{3}} = \frac{1}{\frac{1}{8}} = 1\div \frac{1}{8} = 1\times \frac{8}{1}=8

This means that:

\displaystyle \frac{\frac{1}{4^{2}}}{\frac{1}{(\frac{1}{2})^{3}}} = \frac{1}{16} \div 8 = \frac{1}{16}\times \frac{1}{8}

The answer is:  \displaystyle \frac{1}{128}

Example Question #107 : Understanding Exponents

Solve:  \displaystyle 3(\frac{5}{3})^{-3}

Possible Answers:

\displaystyle \frac{125}{9}

\displaystyle \frac{1}{125}

\displaystyle \frac{9}{125}

\displaystyle \frac{125}{81}

\displaystyle \frac{81}{125}

Correct answer:

\displaystyle \frac{81}{125}

Explanation:

Rewrite the negative exponential term as a fraction.

\displaystyle x^{-y}=\frac{1}{x^y}

Rewrite the expression.

\displaystyle 3(\frac{5}{3})^{-3} = 3\cdot \frac{1}{(\frac{5}{3})^3} = 3\cdot \frac{1}{(\frac{125}{27})}

Simplify the second term.

\displaystyle \frac{1}{(\frac{125}{27})} = 1\div \frac{125}{27} = 1\times \frac{27} {125}=\frac{27} {125}

Replace the term.

\displaystyle 3\cdot \frac{1}{(\frac{125}{27})} = 3\cdot \frac{27}{125}

Multiply the whole number with the numerator.

The answer is:  \displaystyle \frac{81}{125}

Example Question #108 : Understanding Exponents

Solve:  \displaystyle 2(\frac{2}{7})^ {-2}

Possible Answers:

\displaystyle \frac{343}{4}

\displaystyle \frac{8}{49}

\displaystyle \frac{7}{2}

\displaystyle \frac{8}{7}

\displaystyle \frac{49}{2}

Correct answer:

\displaystyle \frac{49}{2}

Explanation:

Solve by first rewriting the term with the negative exponent as a fraction.

\displaystyle 2(\frac{2}{7})^ {-2} = 2\cdot \frac{1}{(\frac{2}{7})^ {2}} = 2\cdot \frac{1}{\frac{4}{49}}

Simplify the complex fraction.

\displaystyle \frac{1}{\frac{4}{49}} = 1\div \frac{4}{49} =1 \times \frac{49}{4}=\frac{49}{4}

The expression becomes: 

\displaystyle 2\cdot \frac{1}{\frac{4}{49}} = 2\cdot \frac{49}{4} = \frac{49}{2}

The answer is:  \displaystyle \frac{49}{2}

Example Question #109 : Understanding Exponents

Evaluate:  \displaystyle (\frac{3^{-2}}{6^{-1}})^{-2}

Possible Answers:

\displaystyle \frac{9}{16}

\displaystyle \frac{16}{9}

\displaystyle 2916

\displaystyle \frac{1}{2916}

\displaystyle \frac{9}{4}

Correct answer:

\displaystyle \frac{9}{4}

Explanation:

To evaluate a negative exponent, it is the reciprocal of the positive power.

\displaystyle x^{-y} = \frac{1}{x^y}

Evaluate each term.

\displaystyle 3^{-2} = \frac{1}{3^2} =\frac{1}{9}

\displaystyle 6^{-1} = \frac{1}{6}

Divide both fractions.

\displaystyle (\frac{3^{-2}}{6^{-1}}) = \frac{1}{9}\div \frac{1}{6} = \frac{1}{9}\times \frac{6}{1} = \frac{2}{3}

The original expression was:  \displaystyle (\frac{3^{-2}}{6^{-1}})^{-2}

Replace the term and repeat the process for solving negative exponents.

\displaystyle (\frac{3^{-2}}{6^{-1}})^{-2} = (\frac{2}{3})^{-2} = \frac{1}{(\frac{2}{3})^2} = \frac{1}{\frac{4}{9}}

The answer is:   \displaystyle \frac{9}{4}

Example Question #110 : Understanding Exponents

Solve:  \displaystyle 3^{-1}+3^{-2}-3^{-3}

Possible Answers:

\displaystyle -\frac{11}{27}

\displaystyle \frac{4}{27}

\displaystyle \frac{11}{27}

\displaystyle \frac{7}{27}

\displaystyle \frac{13}{27}

Correct answer:

\displaystyle \frac{11}{27}

Explanation:

Convert all terms with negative exponents to fractional form.

\displaystyle x^{-Y} = \frac{1}{x^Y}

\displaystyle 3^{-1}+3^{-2}-3^{-3} =\frac{1}{3^{1}}+\frac{1}{3^2}-\frac{1}{3^3}

\displaystyle \frac{1}{3}+\frac{1}{9}-\frac{1}{27}

Convert all fractions to a common denominator.  Visually, the LCD can be seen as 27, since this value is divisible by all three terms.

\displaystyle \frac{1(9)}{3(9)}+\frac{1(3)}{9(3)}-\frac{1}{27} = \frac{9}{27}+ \frac{3}{27}- \frac{1}{27}

The answer is:  \displaystyle \frac{11}{27}

Learning Tools by Varsity Tutors