Algebra II : Intermediate Single-Variable Algebra

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Intermediate Single Variable Algebra

Simplify:

\displaystyle (6x-3y+10)-(-2x+10y-12)

Possible Answers:

\displaystyle 8x-13y-22

\displaystyle 8x-13y+22

\displaystyle 8x-13y

\displaystyle 8x+13y+22

\displaystyle -8x-13y+22

Correct answer:

\displaystyle 8x-13y+22

Explanation:

To simplify, first remember to distribute the negative sign in front of the second set of terms:

\displaystyle 6x-3y+10+2x-10y+12.

Then, combine like terms.

Your answer is:

\displaystyle 8x-13y+22.

Example Question #42 : Intermediate Single Variable Algebra

Simplify:

\displaystyle 16x^2-64x+28

Possible Answers:

\displaystyle 4(4x^2-16x+7)

\displaystyle 4(4x^3-16x+7)

\displaystyle 2(4x^2-16x+7)

\displaystyle 4(4x^2-16x-7)

\displaystyle 4(-4x^2-16x+7)

Correct answer:

\displaystyle 4(4x^2-16x+7)

Explanation:

To simplify this expression, first identify the greatest common factor for this set of terms.

In this case, it's 4.

Then, factor 4 out of each of the terms to get your answer of:

\displaystyle 4(4x^2-16x+7).

Example Question #43 : Simplifying Polynomials

Simplify:  \displaystyle (2x^2+3x+2)(x^2-4x-5)

Possible Answers:

\displaystyle 2x^4-5x^3-20x^2-7x-10

\displaystyle 2x^4-5x^3-20x^2-23x-10

\displaystyle 2x^4+5x^3-24x^2-7x-10

\displaystyle 2x^4+5x^3-24x^2-23x-10

\displaystyle 3x^2-12x-10

Correct answer:

\displaystyle 2x^4-5x^3-20x^2-23x-10

Explanation:

In order to multiply both terms, first distribute the first term of the first polynomial with the the second polynomial.

\displaystyle 2x^2(x^2-4x-5) = 2x^4-8x^3-10x^2

Repeat the process for the second and third terms.

\displaystyle 3x(x^2-4x-5)=3x^3-12x^2-15x

\displaystyle 2(x^2-4x-5) = 2x^2-8x-10

Add all the trinomials together and combine like-terms.

\displaystyle (2x^4-8x^3-10x^2)+(3x^3-12x^2-15x)+(2x^2-8x-10)

The answer is:  \displaystyle 2x^4-5x^3-20x^2-23x-10

Example Question #43 : Simplifying Polynomials

Simplify: \displaystyle 4x^2-x+9x^2+5x^3-11x

Possible Answers:

\displaystyle 5x^3+13x^2-x

\displaystyle 5x^3+13x^2-12x

\displaystyle 5x^3+3x^2-12x

\displaystyle 5x^3+13x^2

\displaystyle x^3+13x^2-12x

Correct answer:

\displaystyle 5x^3+13x^2-12x

Explanation:

To simplify this expression, combine all like terms:

\displaystyle 4x^2+9x^2=13x^2

\displaystyle -x-11x=-12x

Put your simplified terms together:

\displaystyle 5x^3+13x^2-12x

Example Question #43 : Intermediate Single Variable Algebra

Simplify: \displaystyle 9(x^2-4)+5(2x+3)

Possible Answers:

\displaystyle 9x^2+10x-20

\displaystyle 9x^2+10x+21

\displaystyle 9x^2+2x-21

\displaystyle 3x^2+10x-21

\displaystyle 9x^2+10x-21

Correct answer:

\displaystyle 9x^2+10x-21

Explanation:

The first step here is to use the distributive property:

\displaystyle 9x^2-36+10x+15

Now combine your like terms to get your final answer:

\displaystyle 9x^2+10x-21

Example Question #46 : Polynomials

Simplify the polynomial. 

\displaystyle 4x^2 + 7x -3 -2x^2 + 6x + 9

Possible Answers:

\displaystyle 2x^2+13x-6

\displaystyle 2x^2-13x+6

\displaystyle 2x^2-13x-6

\displaystyle 2x^2+13x+6

\displaystyle -2x^2+13x+6

Correct answer:

\displaystyle 2x^2+13x+6

Explanation:

Simplify the polynomial.

\displaystyle 4x^2+7x-3-2x^2+6x+9

Step 1: Rearrange the expression so that like terms are next to each other.

Remember: Like terms are terms with the same type of variable.

\displaystyle 4x^2-2x^2+7x+6x-3+9

Step 2: Simplify by adding or subtracting like terms.

\displaystyle 2x^2+13x+6

Solution: \displaystyle 2x^2+13x+6

 

 

Example Question #44 : Simplifying Polynomials

Simplify this polynomial: \displaystyle 5x^4+x^4+3x^2-8+3x-x(3+8x)-10

Possible Answers:

\displaystyle 6x^4-5x^2-18

\displaystyle 6x^4+3x^2-8x-18

\displaystyle 6x^4+11x^2+6x-18

None of the other answers.

\displaystyle 6x^4+11x^2-18

Correct answer:

\displaystyle 6x^4-5x^2-18

Explanation:

In order to correctly simplify this problem you must pay attention to which terms are actually considered "like terms" and pay attention to signs. For instance 6x and 6x^2 are not like terms. Neither are 3 and 3x.

\displaystyle 5x^4+x^4+3x^2-8+3x-x(3+8x)-10

Start by distributing within the parenthesis:

\displaystyle 5x^4+x^4+3x^2-8+3x-3x-8x^2-10

Next simplify the like terms based on your preference. We will start with the highest powers (largest exponents):

\displaystyle 6x^4+3x^2-8+3x-3x-8x^2-10

Now the squared exponents:

\displaystyle 5x^4+x^4-5x^2-8+3x-3x-10

Now the x terms cancel and simplify the constants:

\displaystyle 6x^4-5x^2-18

 

Example Question #1 : Factoring Polynomials

Find the zeros.

\displaystyle f(x)=x^{3}-1

Possible Answers:

\displaystyle x=1

\displaystyle x=10

\displaystyle x=-1

\displaystyle x=0

\displaystyle x=1,-1

Correct answer:

\displaystyle x=1

Explanation:

This is a difference of perfect cubes so it factors to \displaystyle (x-1)(x^2+x+1). Only the first expression will yield an answer when set equal to 0, which is 1. The second expression will never cross the \displaystyle x-axis. Therefore, your answer is only 1.

Example Question #1 : Factoring Polynomials

Find the zeros.

\displaystyle f(x)=2x^5-8x^3+8x

Possible Answers:

\displaystyle x=0, \sqrt{2}, -\sqrt{2 }

\displaystyle x=\sqrt{2}

\displaystyle x=0

\displaystyle x=2,0

Correct answer:

\displaystyle x=0, \sqrt{2}, -\sqrt{2 }

Explanation:

Factor the equation to \displaystyle 2x(x^4-4x^2+4). Set \displaystyle 2x=0 and get one of your \displaystyle x's to be \displaystyle 0. Then factor the second expression to \displaystyle (x^2-2) (x^2-2). Set them equal to zero and you get \displaystyle \pm \sqrt{2}

Example Question #1 : Factoring Polynomials

Factor the polynomial:

\displaystyle 16x^{3} -48x^{2} + 32x

Possible Answers:

\displaystyle 8x(x-2)(x+1)

\displaystyle 8x(x-2)(x-1)

\displaystyle 16x(x+2)(x+1)

\displaystyle 16x(x+2)(x-1)

\displaystyle 16x(x-2)(x-1)

Correct answer:

\displaystyle 16x(x-2)(x-1)

Explanation:

First, begin by factoring out a common term, in this case \displaystyle 16x:

\displaystyle 16x^{3} -48x^{2} + 32x = 16x(x^{2}-3x+2)

Then, factor the terms in parentheses by finding two integers that sum to \displaystyle -3 and multiply to \displaystyle 2:

\displaystyle 16x(x-2)(x-1)

Learning Tools by Varsity Tutors