All Algebra II Resources
Example Questions
Example Question #71 : Inverse Functions
Define a function .
Which statement correctly gives ?
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch the positions of  andÂ
:
Solve for  - that is, isolate it on one side - as follows:
Split the expression at right into the difference of two separate expressions:
Simplify:
Add  to both sides:
Simplify the expression at right:
Take the reciprocal of both sides:
Replace  withÂ
:
Â
Example Question #72 : Inverse Functions
Define a function .
Which statement correctly gives ?
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch the positions of  andÂ
:
or
Solve for  - that is, isolate it on one side - as follows:
Raise both sides to the third power:
Â
Add 9 to both sides:
Multiply both sides by , distributing on the right side:
Replace  withÂ
:
Example Question #73 : Inverse Functions
Define a function .
True or false:Â Â is its own inverse.
True
False
True
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch  andÂ
:
Solve for  - that is, isolateÂ
 on one side of the equation - as follows:
Multiply both sides by , distributing on the right side:
Add  to both sides to get allÂ
 terms to the left, then factor outÂ
:
Divide both sides by :
Replace  withÂ
:
Therefore, , and Â
 is indeed its own inverse.
Example Question #74 : Inverse Functions
Define a function .
Which statement correctly gives ?
None of the other choices gives the correct response.
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch the positions of  andÂ
:
or
Solve for  - that is, isolate it on one side.
First, subtract 4:
Multiply by  and distribute on the right:
Take the natural logarithm of both sides:
Replace  withÂ
:
Example Question #71 : Inverse Functions
Which is true of the relation graphed above?
The relation is a function, but it does not have an inverse.
The relation is a function, and it has an inverse.
The relation is not a function.
The relation is not a function.
A relation is a function if and only if it passes the Vertical Line Test (VLT) - that is, no vertical line exists that passes through its graph more than once. From the diagram below, we see that at least one such line exists:
The relation fails the VLT, so it is not a function.
Example Question #76 : Inverse Functions
The above table shows a function with domain .
True or false:Â Â has an inverse function.
True
False
True
A function  has an inverse function if and only if, for all
 in the domain ofÂ
, ifÂ
, it follows thatÂ
. In other words, no two values in the domain can be matched with the same range value.
If we order the rows by range value, we see this to be the case:
Â
If follows that  has an inverse function.
Example Question #77 : Inverse Functions
Define a function .
Which statement correctly gives ?
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch the positions of  andÂ
:
,
or,
Solve for  - that is, isolate it on one side.
Take the reciprocals of both sides:
Multiply both sides by 5:
Add 7:
The right expression can be simplified as follows:
Â
Replace  withÂ
:
Example Question #78 : Inverse Functions
Define a function .
Which statement correctly gives ?
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch the positions of  andÂ
:
,Â
or
Take the natural logarithm of both sides:
By definition, , so
Add 3 to both sides:
Replace  withÂ
:
This is not given among the choices; however, remember that by one of the properties of logarithms,
,
soÂ
By another property, , so
or
,
which is among the choices and is the correct answer.
Â
Example Question #81 : Inverse Functions
The above table shows a function with domain .
True or false:Â Â has an inverse function.
False
True
False
A function  has an inverse function if and only if, for allÂ
 in the domain ofÂ
, ifÂ
, it follows thatÂ
. In other words, no two values in the domain can be matched with the same range value.
If we order the rows by range value, we see this to not be the case:
 andÂ
. Since two range values exist to which more than one domain value is matched, the function has no inverse.
Example Question #82 : Inverse Functions
Define a function .
Which statement correctly gives ?
None of these
The inverse function  of a functionÂ
 can be found as follows:
Replace  withÂ
:
Switch the positions of  andÂ
:
, or
Solve for  - that is, isolate it on one side.
First, subtract 15:
Multiply by :
Distribute:
Replace  withÂ
:
,
the correct response.
Certified Tutor
Certified Tutor
All Algebra II Resources
