All Algebra II Resources
Example Questions
Example Question #1 : How To Find The Next Term In An Arithmetic Sequence
We have the following sequence
What is the value of ?
First, find a pattern in the sequence. You will notice that each time you move from one number to the very next one, it increases by 7. That is, the difference between one number and the next is 7. Therefore, we can add 7 to 36 and the result will be 43. Thus .
Example Question #5 : How To Find The Next Term In An Arithmetic Sequence
Find the next term in the following sequence.
Determine what kind of sequence you have, i.e. whether the sequence changes by a constant difference or a constant ratio. You can test this by looking at pairs of numbers, but this sequence has a constant difference (arithmetic sequence).
So the sequence advances by subtracting 16 each time. Apply this to the last given term.
Example Question #1 : How To Find The Common Difference In Sequences
Find the common difference in the following arithmetic sequence.
An arithmetic sequence adds or subtracts a fixed amount (the common difference) to get the next term in the sequence. If you know you have an arithmetic sequence, subtract the first term from the second term to find the common difference.
Example Question #71 : Summations And Sequences
Find the common difference in the following arithmetic sequence.
An arithmetic sequence adds or subtracts a fixed amount (the common difference) to get the next term in the sequence. If you know you have an arithmetic sequence, subtract the first term from the second term to find the common difference.
(i.e. the sequence advances by subtracting 27)
Example Question #11 : Arithmetic Series
Which of the following is an example of an arithmetic sequence?
Each of these sequences is an arithmetic sequence.
Each of these sequences is an arithmetic sequence.
In each case, the terms increase by the same number, so all of these sequences are arithmetic.
Each term is the result of adding 1 to the previous term. 1 is the common difference.
Each term is the result of subtracting 1 from - or, equivalently, adding to - the previous term. is the common difference.
The common difference is 0 in a constant sequence such as this.
Each term is the result of adding to the previous term. is the common difference.
Example Question #11 : Arithmetic Series
Which of the following numbers completes the arithmetic sequence below?
{13, 25, __, 49}
In an arithmetic sequence the amount that the sequence grows or shrinks by on each successive term is the common difference. This is a fixed number you can get by subtracting the first term from the second.
So the sequence is adding 12 each time. Add 12 to 25 to get the third term.
So the unknown term is 37. To double check add 12 again to 37 and it should equal the fourth term, 49, which it does.
Example Question #1 : How To Find The Nth Term Of An Arithmetic Sequence
Given the the sequence below, what is the 11th term of the sequence?
1, 5, 9, 13, . . .
45
49
53
41
37
41
The 11th term means there are 10 gaps in between the first term and the 11th term. Each gap has a difference of +4, so the 11th term would be given by 10 * 4 + 1 = 41.
The first term is 1.
Each term after increases by +4.
The nth term will be equal to 1 + (n – 1)(4).
The 11th term will be 1 + (11 – 1)(4)
1 + (10)(4) = 1 + (40) = 41
Example Question #11 : How To Find The Nth Term Of An Arithmetic Sequence
The second term of an arithmetic sequence is ; the fourth term is . What is the first term?
The common difference between the terms is half that between the second and fourth terms - that is:
Subtract this common difference from the second term to get the first:
Example Question #12 : How To Find The Nth Term Of An Arithmetic Sequence
An arithmetic sequence is given by the formula . What is the difference between and
You can either calculate the vaules of and and subtract, or notice from the formula that each succesive number in the sequence is 3 larger than the previous
Example Question #11 : Arithmetic Series
Consider the following arithmetic sequence:
What is the term?
A simple way to find the term of an arithmetic sequence is to use the formula .
Here, is the term you are trying to find, is the first term, and is the common difference. For this question, the common difference is .
Certified Tutor