Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4131 : Algebra Ii

Simplify.

\displaystyle \frac{3}{1-\sqrt{2}}

Possible Answers:

\displaystyle -3-3\sqrt{2}

\displaystyle 3-3\sqrt{2}

\displaystyle \frac{-3-3\sqrt{2}}{2}

\displaystyle 3+3\sqrt{2}

\displaystyle \frac{3+3\sqrt{2}}{2}

Correct answer:

\displaystyle -3-3\sqrt{2}

Explanation:

\displaystyle \frac{3}{1-\sqrt{2}} To get rid of the radical in the denominator, we need to multiply top and bottom by the conjugate which is the opposite sign of the radical expression. This would be \displaystyle 1+\sqrt{2}.

\displaystyle \frac{3}{1-\sqrt{2}}\cdot\frac{1+\sqrt{2}}{1+\sqrt{2}}=\frac{3+3\sqrt{2}}{1-2}=\frac{3+3\sqrt{2}}{-1} Remember to use FOIL when multiplying out the denominators. Now, with out answer, we can distribute out the \displaystyle -1

\displaystyle \frac{3+3\sqrt{2}}{-1}=-3-3\sqrt{2}

Example Question #35 : Multiplying And Dividing Radicals

Multiply:\displaystyle 6\sqrt{3}*2\sqrt{8}

Possible Answers:

\displaystyle 12\sqrt{6}

\displaystyle 12\sqrt{24}

Cannot combine these radicals

\displaystyle 24\sqrt{6}

None of these

Correct answer:

\displaystyle 24\sqrt{6}

Explanation:

\displaystyle 6\sqrt{3}*2\sqrt{8}

Multiply the outer numbers first:

\displaystyle 12(\sqrt{3}*\sqrt{8})

Combine radicals:

\displaystyle 12\sqrt{24}

Simplify the radical:

\displaystyle 12\sqrt{6*4}

\displaystyle \mathbf{24\sqrt{6}}

Example Question #33 : Multiplying And Dividing Radicals

\displaystyle \sqrt{3}*\sqrt{7}

Possible Answers:

\displaystyle \sqrt{21}

\displaystyle \sqrt{37}

\displaystyle 10

\displaystyle 21

\displaystyle \sqrt{10}

Correct answer:

\displaystyle \sqrt{21}

Explanation:

When multiplying radicals, we can just multiply the values inside the radicand.

\displaystyle \sqrt{3}*\sqrt{7}=\sqrt{3*7}=\sqrt{21}

Example Question #141 : Simplifying Radicals

\displaystyle \sqrt{3}*\sqrt{27}

Possible Answers:

\displaystyle \sqrt{30}

\displaystyle 4\sqrt{3}

\displaystyle 81

\displaystyle 9\sqrt{3}

\displaystyle 9

Correct answer:

\displaystyle 9

Explanation:

When multiplying radicals, we can just multiply the values inside the radicand.

\displaystyle \sqrt{3}*\sqrt{27}=\sqrt{3*27}=\sqrt{81}=9

Example Question #142 : Simplifying Radicals

\displaystyle \sqrt{5}*\sqrt{15}

Possible Answers:

\displaystyle 4\sqrt{3}

\displaystyle 3\sqrt{5}

\displaystyle 5\sqrt{3}

\displaystyle 5\sqrt{2}

\displaystyle 2\sqrt{5}

Correct answer:

\displaystyle 5\sqrt{3}

Explanation:

When multiplying radicals, we can just multiply the values inside the radicand.

\displaystyle \sqrt{5}*\sqrt{15}=\sqrt{5*15}=\sqrt{75} We can simplify this by finding a perfect square.

\displaystyle \sqrt{75}=\sqrt{25}*\sqrt{3}=5\sqrt{3}

Example Question #143 : Simplifying Radicals

\displaystyle \frac{{4}}{\sqrt{2}}

Possible Answers:

\displaystyle 2

\displaystyle \frac{\sqrt{2}}{4}

\displaystyle \frac{\sqrt{2}}{2}

\displaystyle 2\sqrt{2}

\displaystyle 4\sqrt{2}

Correct answer:

\displaystyle 2\sqrt{2}

Explanation:

When dealing with radicals in the denominator, we simplify it by multiplying top and bottom by the radical.

\displaystyle \frac{4}{\sqrt{2}}=\frac{4}{\sqrt{2}}*\frac{\sqrt{2}}{\sqrt{2}}=\frac{4\sqrt{2}}{2}=2\sqrt{2}

Example Question #4135 : Algebra Ii

\displaystyle \frac{\sqrt{6}}{\sqrt{12}}

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle \frac{\sqrt{2}}{2}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle \frac{\sqrt{2}}{4}

\displaystyle \sqrt{2}

Correct answer:

\displaystyle \frac{\sqrt{2}}{2}

Explanation:

We can simplify this fraction. We can combine the radicals into a giant radical expression.

\displaystyle \frac{\sqrt{6}}{\sqrt{12}}=\sqrt{\frac{6}{12}}=\sqrt{\frac{1}{2}}

When dealing with radicals in the denominator, we simplify it by multiplying top and bottom by the radical.

\displaystyle \frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}*\frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{2}

Example Question #144 : Simplifying Radicals

\displaystyle \sqrt[3]{4}*\sqrt[3]16{}

Possible Answers:

\displaystyle 4\sqrt{3}

\displaystyle 64

\displaystyle 2\sqrt[3]{4}

\displaystyle 2\sqrt[3]{16}

\displaystyle 4

Correct answer:

\displaystyle 4

Explanation:

When multiplying radicals, we can just multiply the values inside the radicand.

\displaystyle \sqrt[3]{4}*\sqrt[3]{16}=\sqrt[3]{64} This can be simplified to \displaystyle 4 which is the cubic root of the answer.

Example Question #1476 : Mathematical Relationships And Basic Graphs

\displaystyle \frac{10}{\sqrt{50}}

Possible Answers:

\displaystyle 5

\displaystyle \frac{\sqrt{2}}{5}

\displaystyle 2\sqrt{2}

\displaystyle \frac{\sqrt{2}}{2}

\displaystyle \sqrt{2}

Correct answer:

\displaystyle \sqrt{2}

Explanation:

We can simplify \displaystyle \sqrt{50} by finding a perfect square.

\displaystyle \sqrt{50}=\sqrt{25}*\sqrt{2}=5\sqrt{2} Next we can reduce to \displaystyle \frac{2}{\sqrt{2}}.

When dealing with radicals in the denominator, we simplify it by multiplying top and bottom by the radical.

\displaystyle \frac{2}{\sqrt{2}}=\frac{2}{\sqrt{2}}*\frac{\sqrt{2}}{\sqrt{2}}=\frac{2\sqrt{2}}{2}=\sqrt{2}

Example Question #43 : Multiplying And Dividing Radicals

\displaystyle \sqrt{16x}\cdot \sqrt{x^2w^4}

Possible Answers:

\displaystyle 4xw\sqrt{x}

\displaystyle 4w^2\sqrt{x}

\displaystyle 4xw^2\sqrt{x}

\displaystyle 4xw^2

Correct answer:

\displaystyle 4xw^2\sqrt{x}

Explanation:

The first step I'd recommend is to multiply everything and put it all underneath one radical: \displaystyle \sqrt{16x^3w^4}. Then, recall that for every two of the same term, cross them out underneath the radical and put one of them outside. Attack each term separately: \displaystyle \sqrt{16}=4, \displaystyle \sqrt{x^3}=x\sqrt{x}, and \displaystyle \sqrt{w^4}=w^2. Put those all together to get: \displaystyle 4xw^2\sqrt{x}.

Learning Tools by Varsity Tutors