Algebra 1 : Variables

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Add Trinomials

Solve this system of equations for \displaystyle x:

\displaystyle 3x - 2y = 14

\displaystyle x + 4y = 21

Possible Answers:

\displaystyle x = 3y + 4

\displaystyle x = 9

\displaystyle x = 5

\displaystyle x = 7

\displaystyle x = 1

Correct answer:

\displaystyle x = 7

Explanation:

First, we want to eliminate the variable \displaystyle y from the set of equations. To do this, we need to make the coefficients of the two \displaystyle y's equal but opposite. This way, when we add the equations, we will be able to eliminate them. To make the \displaystyle -2y equal but opposite to the \displaystyle 4y, we need to multiply the top equation by 2 on both sides. This gives us the equation:

\displaystyle 6x - 4y = 28

Then, we combine the two equations by adding them. We add the like terms together and get this equation:

\displaystyle 7x = 49

Using our knowledge of algebra, we know we can divide both sides by 7 to isolate the \displaystyle x. Doing so leaves us with our answer, \displaystyle 7.

Example Question #41 : Trinomials

\displaystyle (2x^2+7x+4) + (x^2-3x+2) = ?

Possible Answers:

\displaystyle 3x^2 - 10x +4

\displaystyle x^2 - 4x +4

\displaystyle 3x^2 - 4x +6

\displaystyle 3x^2 + 4x +6

Correct answer:

\displaystyle 3x^2 - 4x +6

Explanation:

To solve this problem, simply add the terms with like exponents and variables:

\displaystyle \\(2x^2+7x+4) + (x^2-3x+2) \\= (2x^2 +x^2) + (7x-3x) + (4+2) \\= 3x^2 - 4x +6

Thus, \displaystyle 3x^2 - 4x +6 is our answer.

Example Question #2 : How To Add Trinomials

Simpify into quadratic form: \displaystyle 2x+5x^2 -2 - 3x^2 = 18 - 4x

Possible Answers:

\displaystyle 2x^2 + 8x - 20

\displaystyle 2x^2 + 6x - 20

\displaystyle 8x^2 + 6x - 20

\displaystyle 2x^2 + 6x + 16

Correct answer:

\displaystyle 2x^2 + 6x - 20

Explanation:

The first step is to combine all terms with like exponents and variables. Watch for negative signs!

\displaystyle 2x+5x^2 -2 - 3x^2 = 18 - 4x\rightarrow  \displaystyle 6x+2x^2 -20

Next, rearrange into standard quadratic form \displaystyle ax^2 + bx + c:

\displaystyle 6x+2x^2 -20 = 2x^2 + 6x - 20

Thus, our answer is \displaystyle 2x^2 + 6x - 20.

Example Question #41 : Polynomials

Simpify into quadratic form: \displaystyle (x+3)(x-2) + (x+3)(x+2)

Possible Answers:

\displaystyle x^2 + 6x + 4

\displaystyle 2x^2 - 6x

\displaystyle x^2 + 6x -4

\displaystyle 2x^2 + 6x

Correct answer:

\displaystyle 2x^2 + 6x

Explanation:

Let's solve this problem the long way, to see how it's done. Then we can look at a shortcut.

First, FOIL the binomial combinations:

FOIL stands for the multiplication between the first terms, outer terms, inner terms, and then the last terms.

\displaystyle (x+3)(x-2) = (x^2+3x-2x-6) = (x^2 + x - 6)

\displaystyle (x+3)(x+2) = (x^2 + 3x + 2x + 6) = (x^2 + 5x + 6)

Lastly, add the compatible terms in our trinomials:

\displaystyle (x^2 + x - 6) + \displaystyle (x^2 + 5x + 6) = \displaystyle 2x^2 + 6x

So, our answer is \displaystyle 2x^2 + 6x.

Now, let's look at a potentially faster way.

Look at our initial problem.

\displaystyle (x+3)(x-2) + (x+3)(x+2)

Notice how \displaystyle (x+3) can be found in both terms? Let's factor that out:

\displaystyle (x+3)(x-2) + (x+3)(x+2) = (x+3)(x-2+x+2)

Simpify the second term:

\displaystyle (x-2+x+2) = 2x

Now, perform a much easier multiplication:

\displaystyle (x+3)(2x) = 2x^2 + 6x

So, our answer is \displaystyle 2x^2 + 6x, and we had a much easier time getting there!

Example Question #42 : Trinomials

Add the trinomials:  \displaystyle (-x^2-3x+6)+(2x^2-3x+1)

Possible Answers:

\displaystyle x^2-6x+7

\displaystyle x^2+6x+7

\displaystyle -x^2+7

\displaystyle x^2+7

\displaystyle -x^2-6x+7

Correct answer:

\displaystyle x^2-6x+7

Explanation:

Eliminate the parentheses and combine like-terms.

\displaystyle -x^2+2x^2=x^2

\displaystyle -3x+(-3x)=-6x

\displaystyle 6+1=7

Combine all the terms.

The answer is:  \displaystyle x^2-6x+7

Example Question #41 : Polynomials

Find the sum. 

\displaystyle (5x^2-8x+3)+(6x^2+4x-5)

Possible Answers:

\displaystyle 7x^2-2

\displaystyle 3x^2+6x+2

\displaystyle -x^2-12x+8

\displaystyle 11x^2-4x-2

Correct answer:

\displaystyle 11x^2-4x-2

Explanation:

When adding trinomials we combine together coefficients of like terms. 

\displaystyle (5x^2-8x+3)+(6x^2+4x-5)=(5+6)x^2+(-8+4)x+3+(-5)

\displaystyle =11x^2-4x-2

Example Question #42 : Polynomials

Add the following trinomials:

\displaystyle (4x^{2} + 6x +14) + (5x^{2} - 3x -13)

Possible Answers:

\displaystyle 9x^{2 } + 3x + 1

\displaystyle 9x^{2} + 3x + 27

\displaystyle 9x^{2 } + 9x +1

\displaystyle 9x^{2} - 3x - 1

\displaystyle 9x^{2 } - 3x + 1

Correct answer:

\displaystyle 9x^{2 } + 3x + 1

Explanation:

Combine like terms:

\displaystyle (4x^{2} + 6x +14) + (5x^{2} - 3x -13)

\displaystyle (4x^{2} + 5x^{2}) + (6x - 3x) + (14 - 13)

\displaystyle 9x^{2} + 3x + 1

Example Question #1 : How To Subtract Trinomials

Solve this system of equations for \displaystyle x:

\displaystyle 2x + y = 12

\displaystyle x - 3y = 13

Possible Answers:

\displaystyle x = 4

\displaystyle x = 11

\displaystyle x = 1

\displaystyle x = 7

\displaystyle x = 9

Correct answer:

\displaystyle x = 7

Explanation:

Multiply the top equation by 3 on both sides, then add the second equation to eliminate the \displaystyle y terms:

 

\displaystyle 2x + y = 12

\displaystyle 3\cdot \left (2x + y \right )= 3\cdot 12

\displaystyle 6x+3y = 36

\displaystyle \underline{x - 3y = 13}

\displaystyle 7x\;\;\;\; \; =49

 

\displaystyle 7x \div 7 =49 \div 7

\displaystyle x = 7

Example Question #1 : Simplifying Polynomials

Evaluate the following:

\displaystyle (2x^2+\frac{3}{4}x-5) - (x^2+x-10)

Possible Answers:

\displaystyle 3x^2-\frac{1}{4}x + 5

\displaystyle x^2-\frac{7}{4}x + 10

\displaystyle x^2-\frac{1}{4}x + 5

\displaystyle x^2-\frac{1}{4}x -15

Correct answer:

\displaystyle x^2-\frac{1}{4}x + 5

Explanation:

To subtract these two trinomials, you first need to flip the sign on every term in the second trinomial, since it is being subtrated:

\displaystyle (2x^2+\frac{3}{4}x-5) - (x^2+x-10)

\displaystyle 2x^2+\frac{3}{4}x-5 - x^2-x+10

Next you can combine like terms. You have two terms with \displaystyle x^2, two terms with \displaystyle x, and two terms with no variable:

\displaystyle x^2-\frac{1}{4}x+5

Example Question #2 : Simplifying And Expanding Quadratics

Subtract:

\displaystyle (x^2+15x-3)-(x^2-5x-3)

Possible Answers:

\displaystyle 2x^2+20x+6

\displaystyle 20x^2

\displaystyle 20x+6

\displaystyle x^4+20x^2+6

\displaystyle 20x

Correct answer:

\displaystyle 20x

Explanation:

When subtracting trinomials, first distribute the negative sign to the expression being subtracted, and then remove the parentheses: \displaystyle (x^2+15x-3)-(x^2-5x-3)=x^2+15x-3-x^2+5x+3

Next, identify and group the like terms in order to combine them: \displaystyle (x^2-x^2)+(15x+5x)+(3-3)=20x.

Learning Tools by Varsity Tutors