Algebra 1 : Polynomials

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #121 : Variables

Perform the indicated mathematical operation on these polynomials:

\displaystyle (6x^4+5x^3+12x^2+2x+5)-(6x^4+5x^3+11x^2+2x+5)

Possible Answers:

\displaystyle x^2+10

None of the other answers.

\displaystyle x^2-10

\displaystyle -x^2

\displaystyle x^2

Correct answer:

\displaystyle x^2

Explanation:

We subtract polynomials just like we would anything else, but we must pay attention to the sign after using the distributive property on the sign that separates the two polynomials in subtraction problems. Then, of course, only like terms can combine or subtract from each other.

\displaystyle (6x^4+5x^3+12x^2+2x+5)-(6x^4+5x^3+11x^2+2x+5)

Start by distributing the negative sign into the second polynomial:

\displaystyle 6x^4+5x^3+12x^2+2x+5-6x^4-5x^3-11x^2-2x-5)

Now combine or subtract like terms based on the sign between them (same colored terms cancel each other out):

\displaystyle {\color{Red} 6x^4}+{\color{Green} 5x^3}+12x^2+{\color{Blue} 2x}+{\color{Purple} 5}-{\color{Red} 6x^4}-{\color{Green} 5x^3}-11x^2-{\color{Blue} 2x}-{\color{Purple} 5})

Left over: \displaystyle 12x^2-11x^2=x^2

Example Question #11 : How To Subtract Polynomials

Subtract the polynomials:

\displaystyle (4x^3+6xy+2y-37)-(6x^2+6xy+y+14)

Possible Answers:

\displaystyle 2x^4+3x^2+3x-8

\displaystyle 4x^3-6x^2+2y-23

\displaystyle 4x^3+12x^2+2y+23

\displaystyle 4x^3-6x^2+y-51

\displaystyle 4x^3-12x^2+y-51

Correct answer:

\displaystyle 4x^3-6x^2+y-51

Explanation:

\displaystyle (4x^3+6xy+2y-37)-(6x^2+6xy+y+14)

Use distribution to simplify the signs of the polynomials.

\displaystyle 4x^3+6{\color{Magenta} xy}+{2\color{Cyan}y}-{{\color{DarkOrange} 37}}-6x^2-6{\color{Magenta} xy}-{\color{Cyan} y}-{\color{DarkOrange} 14}

Combine like terms while following coefficient rules.

\displaystyle 4x^3+(6-6){{\color{Magenta} xy}}+{(2-1){\color{Cyan} y}}-6x^2-({\color{DarkOrange} {37}-{14}})

The correct expanded and simplified answer will be

\displaystyle 4x^3-6x^2+y-51.

Example Question #121 : Variables

Simplify the following:

\displaystyle (3x^2 - y) - (x^2 + 2)

Possible Answers:

\displaystyle -3xy^2

\displaystyle 3xy^2

\displaystyle 2x^2 - 2y

\displaystyle 2y - 2x^2

\displaystyle 2x^2 - y - 2

Correct answer:

\displaystyle 2x^2 - y - 2

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle (3x^2 - y) - (x^2 + 2)

 

\displaystyle 3x^2 - y - x^2 - 2

\displaystyle 2x^2 - y - 2

Example Question #124 : Variables

Simplify the following:

\displaystyle (3x^2 + 2x + 1) - (2x^2 - 2x + 5)

Possible Answers:

\displaystyle x^2 + 4x + 4

\displaystyle x^2 + 4x - 4

\displaystyle x^2 + 4x + 6

\displaystyle x^2 - 4x - 4

\displaystyle x^2 - 4x + 4

Correct answer:

\displaystyle x^2 + 4x - 4

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle (3x^2 + 2x + 1) - (2x^2 - 2x + 5)

 

\displaystyle 3x^2 + 2x + 1 - 2x^2 + 2x - 5

\displaystyle x^2 + 4x - 4

Example Question #125 : Variables

Simplify the following:

\displaystyle y(x +1) - y(x^2 + 1)

Possible Answers:

\displaystyle yx^2 - y - yx - 1

\displaystyle -yx^2 + yx

\displaystyle yx^2 - y + yx

\displaystyle -yx^2 - yx - 2

\displaystyle yx^2 + yx

Correct answer:

\displaystyle -yx^2 + yx

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle y(x +1) - y(x^2 + 1)

 

\displaystyle yx + y - yx^2 - y

\displaystyle -yx^2 + yx

Example Question #11 : How To Subtract Polynomials

Simplify the following:

\displaystyle (2ab + 4) - x(ab + 3)

Possible Answers:

\displaystyle 2(ab +xab) - 4

\displaystyle 2ab - xab - 8

\displaystyle 2ab + xab

\displaystyle 2ab -xab +1

\displaystyle 2ab + xab - 1

Correct answer:

\displaystyle 2ab -xab +1

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle (2ab + 4) - x(ab + 3)

 

\displaystyle 2ab + 4 -xab -3

 

\displaystyle 2ab -xab +1

Example Question #12 : How To Subtract Polynomials

Simplify the following:

\displaystyle 2x^2 - y - (4x + y)

Possible Answers:

\displaystyle -1(2x^2 - 4x - 2y)

\displaystyle 2x^2 - 4x + 2y

\displaystyle -2x^2 - 4x - 2y

\displaystyle 2x^2 - 4x

\displaystyle 2x^2 - 4x - 2y

Correct answer:

\displaystyle 2x^2 - 4x - 2y

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle 2x^2 - y - (4x + y)

 

\displaystyle 2x^@ - y -4x - y

\displaystyle 2x^2 - 4x - 2y

Example Question #128 : Variables

Simplify the following:

\displaystyle 2(x^2 + y^2) - 2(x - y)

Possible Answers:

\displaystyle 2x^2 - 2y^2 +2x + 2y

\displaystyle -2x^2 + 2y^2 +2x + 2y

\displaystyle 2x^2 + 2y^2 +2x + 2y

\displaystyle 2x^2 + 2y^2 +2x - 2y

\displaystyle 2x^2 + 2y^2 -2x + 2y

Correct answer:

\displaystyle 2x^2 + 2y^2 -2x + 2y

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle 2(x^2 + y^2) - 2(x - y)

\displaystyle 2x^2 + 2y^2 - 2x + 2y

 

Example Question #129 : Variables

Simplify the following:

\displaystyle a(a + b) - b(a+b)

Possible Answers:

\displaystyle 2a^2 -2b^2

\displaystyle a^2 + 2ab-b^2

\displaystyle a^2 -b^2

\displaystyle a^2 +ab -b^2

\displaystyle 2a^2 -b^2

Correct answer:

\displaystyle a^2 -b^2

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle a(a + b) - b(a+b)

 

\displaystyle a^2 + ab - ab - b^2

\displaystyle a^2 -b^2

Example Question #121 : Polynomials

Simplify the following:

\displaystyle a(x + y) - a(x-y)

Possible Answers:

\displaystyle 2ay

\displaystyle -2ay

\displaystyle 2ax

\displaystyle ax + ay

\displaystyle -2ax

Correct answer:

\displaystyle 2ay

Explanation:

To solve this problem, first distribute anything through parentheses that needs to be distributed, then combine all terms with like variables (i.e. same variable, same exponent):

\displaystyle a(x + y) - a(x-y)

 

\displaystyle ax + ay - ax + ay

\displaystyle 2ay

Learning Tools by Varsity Tutors