Algebra 1 : Polynomial Operations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Divide Polynomials

Simplify  \displaystyle \frac{x^{5}y^{10}z^{3}}{x^{8}y^{-6}z^{2}}

Possible Answers:

\displaystyle x^{3}y^{4}z

\displaystyle \frac{y^{16}z}{x^{3}}

\displaystyle \frac{x^{3}z}{y^{4}}

\displaystyle x^{3}y^{4}z^{5}

\displaystyle x^{13}y^{16}z^{5}

Correct answer:

\displaystyle \frac{y^{16}z}{x^{3}}

Explanation:

When dividing exponents, you subtract exponents that share the same base, so

\displaystyle 5-8=-3 and \displaystyle 10-(-6)=16 and \displaystyle 3-2=1.

Do not forget to "add the opposite" when subtracting negative numbers).

Now, you have

\displaystyle x^{-3}y^{16}z^{1}

But you are not done yet!  Remember, you do not want to have a negative exponent, and the way to turn the negative exponent into a positive exponent is to take its reciprocal, like this:

\displaystyle x^{-3} = \frac{1}{x^{3}}

You keep the rest of the equation in the numerator, leaving you with

\displaystyle \frac{y^{16}z}{x^{3}}

Example Question #2 : How To Divide Polynomials

Simplify the rational expression.

\displaystyle \frac{r^2s^9x^5}{r^4s^3x}

Possible Answers:

\displaystyle r^6s^{12}x^6

\displaystyle s^3x^4

\displaystyle r^{-2}s^3x^4

\displaystyle \frac{s^6x^4}{r^2}

\displaystyle r^{2}s^6x^4

Correct answer:

\displaystyle \frac{s^6x^4}{r^2}

Explanation:

\displaystyle \frac{r^2s^9x^5}{r^4s^3x}

To simplify, we must use exponent rules. For exponents in fractions, we can subtract the exponent of the denominator from the exponent in the numerator.

\displaystyle \frac{a^b}{a^c}=a^{b-c}

With this rule, we can rewrite the problem.

\displaystyle r^{2-4}s^{9-3}x^{5-1}

\displaystyle r^{-2}s^6x^4

Remember that negative exponents get moved back to the denominator, turning them positive.

\displaystyle \frac{s^6x^4}{r^2}

Example Question #1 : How To Divide Polynomials

Find the Greatest Common Factor (GCF) of the following polynomial:

 

\displaystyle 24x^{4}y^{3}-12x^{3}y^{4}+8x^{5}y^{2}-4x^{2}y

Possible Answers:

\displaystyle 4x^{3}

\displaystyle 4x^{2}y^{2}

\displaystyle 4x^{3}y

\displaystyle 4xy^{2}

\displaystyle 4x^{2}y

Correct answer:

\displaystyle 4x^{2}y

Explanation:

4 goes into 24, 12, 8, and 4.

Similarly, the smallest exponent of x in the four terms is 2, and the smallest exponent of y in the four terms is 1.

Hence the GCF must be \displaystyle 4x^{2}y.

Example Question #4 : How To Divide Polynomials

Divide:

\displaystyle \left ( 4x^{2}y^{2}-8xy^{3}+16xy^{4} \right )\div \left ( 4x^{2}y \right )

Possible Answers:

\displaystyle y - \frac{2y^{2}}{x^{2}}+\frac{4y^{2}}{x^{2}}

\displaystyle 1-\frac{2y}{x}+\frac{4y^{2}}{x^{2}}

\displaystyle y-\frac{2y^{2}}{x}+\frac{4y^{3}}{x}

\displaystyle y-\frac{2y}{x^{2}}+4\frac{y}{x^{3}}

\displaystyle 1 - \frac{2y}{x} + \frac{4y^{3}}{x^{2}}

Correct answer:

\displaystyle y-\frac{2y^{2}}{x}+\frac{4y^{3}}{x}

Explanation:

Divide each of the terms in the numerator by the denominator:

\displaystyle \frac{4x^{2}y^{2}}{4x^{2}y}-\frac{8xy^{3}}{4x^{2}y} + \frac{16y^{4}}{4x^{2}y}

Simplify each term above to get the final:

\displaystyle y-\frac{2y^{2}}{x}+\frac{4y^{3}}{x}

Example Question #5 : How To Divide Polynomials

Find the quotient:

 

\displaystyle \frac{2x^{3}+x^{2}-12x+9}{x+3}

Possible Answers:

\displaystyle -2x^{2}-5x+3

\displaystyle 2x^{2}-5x-3

\displaystyle 2x^{2}+5x+3

\displaystyle -2x^{2}-5x-3

\displaystyle 2x^{2}-5x+3

Correct answer:

\displaystyle 2x^{2}-5x+3

Explanation:

The numerator can be factored into

\displaystyle \left ( x-1 \right )\left ( x+3 \right )\left ( 2x-3 \right ),

which when divided by \displaystyle \left ( x+3 \right ),

gives us \displaystyle \left ( x-1 \right )\left ( 2x-3 \right ) = 2x^{2}-5x+3.

Alternate method: Long division of the numerator by the denominator gives the same answer.

 

Example Question #2 : How To Divide Polynomials

Find the remainder:

\displaystyle \frac{2x^{3}+x^{2}-12x+3}{2x-3}

Possible Answers:

\displaystyle \frac{-6x^{2}}{2x-3}

\displaystyle \frac{-6}{2x-3}

\displaystyle \frac{6}{2x-3}

\displaystyle \frac{-6x}{2x-3}

-6

Correct answer:

\displaystyle \frac{-6}{2x-3}

Explanation:

When we divide a polynomial by another polynomial we get:

  1. Quotient
  2. Remainder (if one exists)

In our problem the long division results in:

  1. A quotient of \displaystyle x^{2}+2x-3
  2. A remainder of \displaystyle \frac{-6}{2x-3}

 

Example Question #1 : Polynomial Operations

Divide:

 \displaystyle \frac{8x^{3}-1}{2x-1}

 

Possible Answers:

\displaystyle 4x^{2}+2x+1

\displaystyle 8x-1

\displaystyle 4x^{2}-2x+1

\displaystyle 4x^{2}-2x-1

\displaystyle 4x^{2} +1

Correct answer:

\displaystyle 4x^{2}+2x+1

Explanation:

This can easily be solved by factoring using the difference of cubes formula:

\displaystyle \left ( x^{3}-y^{3} \right ) = \left ( x-y \right )\left ( x^{2}+xy+y^{2} \right )

First, convert the given polynomial into a difference of two cubes:

\displaystyle \left ( \left ( 2x \right )^{3} -\left ( 1 \right )^{3}\right )

Compare this with the difference of cubes formula above to get:

\displaystyle \left ( 2x-1 \right )\left ( 4x^{2}+2x+1 \right )

By dividing the above numerator by the given denominator we get:

\displaystyle 4x^{2}+2x+1

Example Question #8 : How To Divide Polynomials

Divide: \displaystyle (5t^{3} - 40t^{2}+ 30t- 10) \div 10t

Possible Answers:

\displaystyle \frac{1}{2} t^{2}- 4t+ 3- \frac{1}{t}

\displaystyle 2 t^{2}- 5t+ 3

\displaystyle \frac{1}{2} t^{2}- 4t+ 3- \frac{1}{2t}

\displaystyle \frac{1}{2} t^{2}- 5t+ 3

\displaystyle 2 t^{2}- 4t+ 3- \frac{1}{t}

Correct answer:

\displaystyle \frac{1}{2} t^{2}- 4t+ 3- \frac{1}{t}

Explanation:

\displaystyle (5t^{3} - 40t^{2}+ 30t- 10) \div 10t 

\displaystyle = \frac{5t^{3}}{10t} - \frac{40t^{2}}{10t}+ \frac{30t}{10t}- \frac{10}{10t}

Cancel:

\displaystyle = \frac{t^{3-1}}{2} - \frac{4t^{2-1}}{1}+ \frac{3}{1}- \frac{1}{t}

\displaystyle = \frac{1}{2} t^{2}- 4t+ 3- \frac{1}{t}

Example Question #9 : How To Divide Polynomials

Divide: \displaystyle \left ( 9x ^{2} + 21x - 18\right ) \div \left (-3x \right )

Possible Answers:

\displaystyle 3x -7

\displaystyle -3x -7+\frac{6}{x }

\displaystyle -3x -7-\frac{6}{x }

\displaystyle -9x -7

\displaystyle -3x +7-\frac{6}{x }

Correct answer:

\displaystyle -3x -7+\frac{6}{x }

Explanation:

\displaystyle \left ( 9x ^{2} + 21x - 18\right ) \div \left (-3x \right )

\displaystyle =\frac{9x ^{2}}{-3x } +\frac{21x }{-3x }- \frac{18}{-3x }

\displaystyle =-\frac{9x ^{2}}{3x }-\frac{21x }{3x }+ \frac{18}{3x }

Cancel:

\displaystyle =-\frac{3x ^{2-1}}{1 }-\frac{7 }{1 }+ \frac{6}{x }

\displaystyle =-3x -7+\frac{6}{x }

Example Question #10 : How To Divide Polynomials

Simplify:

\displaystyle \frac {21b^2 + 7b^3 - 14b}{7b}

Possible Answers:

\displaystyle 3b^3 + b^4 + 2b^2

\displaystyle b^{2}+3b-2

\displaystyle 3b + b^2 + 2

\displaystyle 3b^3 + b^4 - 2b^2

\displaystyle 3b^2 + b^3 - 2

Correct answer:

\displaystyle b^{2}+3b-2

Explanation:

7 in the denominator is a common factor of the three coefficients in the numerator, which allows you to divide out the 7 from the denominator:

\displaystyle \frac {3b^2 + b^3 - 2b}{b}

Then divide by \displaystyle b:

\displaystyle ={3b + b^2 - 2}

Learning Tools by Varsity Tutors