Algebra 1 : Polynomial Operations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Multiplication And Division

Multiply: \displaystyle (x - 4)(x+ 4) (x -7)

Possible Answers:

\displaystyle x^{3} + 7x^{2} - 16x - 112

\displaystyle x^{3} + 112

\displaystyle x^{3} -23x + 112

\displaystyle x^{3} -23x^{2} + 112

\displaystyle x^{3} - 7x^{2} - 16x + 112

Correct answer:

\displaystyle x^{3} - 7x^{2} - 16x + 112

Explanation:

The first two factors are the product of the sum and the difference of the same two terms, so we can use the difference of squares:

\displaystyle (x - 4)(x+ 4) (x -7)

\displaystyle = (x^{2} - 4^{2}) (x -7)

\displaystyle = (x^{2} - 16) (x -7)

Now use the FOIL method:

\displaystyle = x^{2}\cdot x - x^{2} \cdot 7 - 16 \cdot x + 16 \cdot7

\displaystyle = x^{3} - 7x^{2} - 16x + 112

Example Question #11 : Simplifying Exponents

Simplify the expression.

\displaystyle y^2z^3y^4z^5y^6

Possible Answers:

\displaystyle y^{12}z^8

\displaystyle y^9z^{11}

\displaystyle y^{15}z^3

\displaystyle y^{12}z^{10}

\displaystyle y^{10}z^8

Correct answer:

\displaystyle y^{12}z^8

Explanation:

\displaystyle y^2z^3y^4z^5y^6

Rearrange the expression so that the \displaystyle \small y and \displaystyle \small z variables of different powers are right next to each other.

\displaystyle y^2y^4y^6z^3z^5

When multiplying the same variable with different exponents, it is the same as adding the exponents: \displaystyle a^ba^c=a^{b+c}. Taking advantage of this rule, the problem can be rewritten.

\displaystyle y^{2+4+6}z^{3+5}

\displaystyle y^{6+6}z^8

\displaystyle y^{12}z^8

Example Question #41 : Polynomial Operations

Rewrite as a single radical expression, assuming \displaystyle x is positive:

\displaystyle \sqrt[4]{x} \cdot \sqrt[3]{x}

Possible Answers:

Correct answer:

Explanation:

Rewrite each radical as an exponential expression, apply the product of powers property, and rewrite the product as a radical:

\displaystyle \sqrt[4]{x} \cdot \sqrt[3]{x}

\displaystyle =x^{ \frac{1}{4}} \cdot x^{ \frac{1}{3}}

\displaystyle =x^{ \frac{1}{4}+ \frac{1}{3}}

\displaystyle =x^{ \frac{3}{12}+ \frac{4}{12}}

\displaystyle =x^{ \frac{7}{12}}

\displaystyle =\sqrt[12]{x ^{7}}

Example Question #41 : Polynomial Operations

Evaluate:  \displaystyle (x-2-x^2)(4-x+3x^2)

Possible Answers:

\displaystyle -3x^4+4x^3+11x^2-6x-8

\displaystyle -3x^4+4x^3-11x^2+6x-8

\displaystyle -3x^4+4x^3-9x^2-6x-8

\displaystyle -3x^4+3x^3+11x^2+6x-8

\displaystyle -3x^4+4x^3-9x^2+6x-8

Correct answer:

\displaystyle -3x^4+4x^3-11x^2+6x-8

Explanation:

This set is out of order, and it may be best to reorganize the terms.  To solve, this is very similar to the FOIL method. 

\displaystyle (x-2-x^2)(4-x+3x^2)= (-x^2+x-2)(3x^2-x+4)

Follow the procedure to distribute each term.

\displaystyle (a+b+c)(e+f+g)

\displaystyle = (ae+af+ag)+(be+bf+bg)+(ce+cf+cg)

\displaystyle =a(e+f+g)+b(e+f+g)+c(e+f+g)

Follow suit to solve the problem.

\displaystyle (-x^2+x-2)(3x^2-x+4)

\displaystyle =(-x^2)(3x^2-x+4)+(x)(3x^2-x+4)+(-2)(3x^2-x+4)

\displaystyle =(-3x^4+x^3-4x^2)+(3x^3-x^2+4x)-6x^2+2x-8

Combine like terms.

The correct answer is:  \displaystyle -3x^4+4x^3-11x^2+6x-8

Example Question #14 : How To Multiply Polynomials

Multiply and simplify the expression
 \displaystyle \frac{3a^2b^4c}{4ab^2c^3} X \frac{12a^5b^2c}{3a^2bc^2}.

Possible Answers:

\displaystyle \frac{4b^2c}{2a^2}

\displaystyle \frac{36a^3c^2}{b^2}

\displaystyle \frac{3a^2b^2}{c^5}

\displaystyle 3a^3b^2c

\displaystyle \frac{3a^4b^3}{c^3}

Correct answer:

\displaystyle \frac{3a^4b^3}{c^3}

Explanation:

The question is asking for the simplified version of this expression:

\displaystyle \frac{3a^2b^4c}{4ab^2c^3} X \frac{12a^5b^2c}{3a^2bc^2}

First, combine like terms in the numerator and denominator according to multiplication and exponent rules. When you are multiplying like bases together you add their exponents.

\displaystyle \frac{3*12*a^2*a^5*b^4*b^2*c*c}{4*3*a*a^2*b^2*b*c^3*c^2}

When you divide like bases you subtract the bottom exponent from the top exponent.

\displaystyle \frac{36a^7b^6c^2}{12a^3b^3c^5} = (36/12)a^{7-3}b^{6-3}c^{2-5}

Finally, simplify the expression by cancelling out terms using GCFs.

\displaystyle 3a^{4}b^{3}c^{-3}

\displaystyle \frac{3a^4b^3}{c^3}

Example Question #15 : How To Multiply Polynomials

Multiply the polynomials and simplify: \displaystyle (4x^3+2x^2-8)(x-\frac{1}{4})

Possible Answers:

\displaystyle 4x^4+x^3-\frac{1}{2}x^2-8x-2

\displaystyle 4x^4+3x^3-\frac{1}{2}x^2-8x+2

\displaystyle 4x^4-x^3-\frac{1}{2}x^2-8x-2

\displaystyle 4x^4+x^3-\frac{1}{2}x^2-8x+2

\displaystyle 4x^4+x^3-\frac{1}{4}x^2-8x+2

Correct answer:

\displaystyle 4x^4+x^3-\frac{1}{2}x^2-8x+2

Explanation:

The key to multiplying polynomials is to keep track of signs and be absolutely sure that you multiply every term in one polynomial (choose the first one) by every term in the other polynomial. For example if polynomial A has 3 terms and polynomial B has two, then then start with the first term in polynomial A and multiply it by both terms in polynomial B. Then choose the second term in polynomial A and repeat. Continue like so until you have gone through all iterations.

First term:

\displaystyle ({\color{Red} 4x^3}+2x^2-8)({\color{Red} x-\frac{1}{4}})

\displaystyle 4x^4-x^3

Second term:

\displaystyle (4x^3+{\color{Green} 2x^2}-8)({\color{Green} x-\frac{1}{4}})

\displaystyle 4x^4-x^3+2x^3-\frac{1}{2}x^2

Third term:

\displaystyle (4x^3+2x^2-{\color{DarkBlue} 8})({\color{DarkBlue} x-\frac{1}{4}})

\displaystyle 4x^4-x^3+2x^3-\frac{1}{2}x^2-8x+2

Now combine terms where able for the final answer:

\displaystyle 4x^4+x^3-\frac{1}{2}x^2-8x+2

 

Example Question #102 : Variables

Multiply:  \displaystyle (x^2-x-3)(x^2+x+3)

Possible Answers:

\displaystyle x^4+3x^3-x^2-6x-9

\displaystyle x^4-2x^3+x^2-9

\displaystyle x^4-2x^3-5x^2+6x+9

\displaystyle x^4-x^2-6x-9

\displaystyle x^4+3x^3-x^2+6x-9

Correct answer:

\displaystyle x^4-x^2-6x-9

Explanation:

Multiply each term of the first polynomial with all the terms of the second polynomial.  Follow the signs of the first polynomial.

\displaystyle x^2(x^2+x+3) =x^4+x^3+3x^2

\displaystyle -x(x^2+x+3) = -x^3-x^2-3x

\displaystyle -3(x^2+x+3)= -3x^2-3x-9

Add and combine like terms.

\displaystyle x^4+x^3+3x^2+(-x^3-x^2-3x)+( -3x^2-3x-9)

The answer is:  \displaystyle x^4-x^2-6x-9

Example Question #1 : How To Subtract Polynomials

Subtract the polynomials below:

\displaystyle (14a^2 + 2a - 5) - (10a^2 - 3a + 8)

Possible Answers:

\displaystyle 4a^2 + 5a - 3

\displaystyle 4a^2 + 5a - 13

\displaystyle 24a^2 - a + 13

\displaystyle 4a^2 + 5a + 3

\displaystyle 4a^2 - a + 3

Correct answer:

\displaystyle 4a^2 + 5a - 13

Explanation:

The first step is to get everything out of parentheses to combine like terms. Since the polynomials are being subtracted, the sign of everything in the second polynomial will be flipped. You can think of this as a \displaystyle -1 being distributed across the polynomial:

\displaystyle (14a^2 + 2a - 5) - (10a^2 - 3a + 8)

\displaystyle =(14a^2 + 2a - 5) + -1(10a^2 - 3a + 8)

\displaystyle =14a^2 + 2a - 5 - 10a^2 + 3a - 8

Now combine like terms:

\displaystyle 14a^2 + 2a - 5 - 10a^2 + 3a - 8

\displaystyle =4a^2 + 2a - 5 + 3a - 8

\displaystyle =4a^2 + 5a - 5 - 8

\displaystyle =4a^2 + 5a - 13

Example Question #2 : How To Subtract Polynomials

Simplify the expression: \displaystyle (5x^2z^4 + 4z^3y^3) - (2x^2z^4 - 3z^3y^3)

Possible Answers:

Cannot be simplified further

\displaystyle 3 x^2 z^4+7 y^3 z^3

\displaystyle 3 x^4 z^8+7 y^6 z^6

\displaystyle x^2 z^4+ y^3 z^3

\displaystyle 0

Correct answer:

\displaystyle 3 x^2 z^4+7 y^3 z^3

Explanation:

Don't be scared by complex terms! First, check to see if the variables are alike. If they match perfectly, we can add and subtract their coefficients just like we could if the expression was \displaystyle 3x - 3x.

Remember, a variable is always a variable, no matter how complex! In this problem, the terms match! So we just subtract the coefficients of the matching terms and we get our answer:

\displaystyle 3 x^2 z^4+7 y^3 z^3

Example Question #1 : Simplifying Polynomials

Rewrite the expression in simplest terms.

\displaystyle 5x^{^{3}} - 14x^{2} - 10x + 3 - (4x+3) * x^{2} - (8-10x)

Possible Answers:

\displaystyle x^{3}-17x^{2}-5

\displaystyle x^3 - 11x^2 - 20x - 5

\displaystyle 5x^3 -17x^2 - 4x - 5

\displaystyle x^3 - 11x^2 - 5

 

\displaystyle 5x^3 -11x^2 - 24x - 5

Correct answer:

\displaystyle x^{3}-17x^{2}-5

Explanation:

In simplifying this expression, be mindful of the order of operations (parenthical, division/multiplication, addition/subtraction).  

\displaystyle 5x^{^{3}} - 14x^{2} - 10x + 3 - (4x+3) * x^{2} - (8-10x)

Since operations invlovling parentheses occur first, distribute the factors into the parenthetical binomials. Note that the \displaystyle x^2 outside the first parenthetical binomial is treated as \displaystyle -x^2 since the parenthetical has a negative (minus) sign in front of it. Similarly, multiply the members of the expression in the second parenthetical by \displaystyle -1 because of the negative (minus) sign in front of it. Distributing these factors results in the following polynomial.

\displaystyle 5x^3 - 14x^2 - 10x + 3 - 4x^3 - 3x^2 - 8 + 10x

Now like terms can be added and subtracted. Arranging the members of the polynomial into groups of like terms can help with this. Be sure to retain any negative signs when rearranging the terms.

\displaystyle 5x^3 - 4x^3 -14x^2 - 3x^2 - 10x + 10x + 3 - 8

Adding and subtracting these terms results in the simplified expression below.

\displaystyle x^3 - 17x^2 -5

Learning Tools by Varsity Tutors