Algebra 1 : Linear Equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : How To Solve One Step Equations

Veronica works as a computer programmer who makes \displaystyle \$120 per hour. How many hours does she have to work in order to earn \displaystyle \$1920?

Possible Answers:

\displaystyle 18

\displaystyle 14

\displaystyle 12

\displaystyle 16

Correct answer:

\displaystyle 16

Explanation:

Let \displaystyle x be the number of hours Veronica must work.

Since we know that she is paid \displaystyle \$120 per hour, we can write the following equation:

\displaystyle 120x=1920

To solve for \displaystyle x, divide both sides by \displaystyle 120.

\displaystyle 120x\div120=1920\div120

\displaystyle x=16

Veronica needs to work for \displaystyle 16 hours to earn \displaystyle \$1920.

Example Question #92 : How To Solve One Step Equations

After spending \displaystyle \$45.10 on groceries, Jimmy has \displaystyle \$3.66 remaining. How much money did Jimmy have before buying groceries?

Possible Answers:

\displaystyle \$41.34

\displaystyle \$49.10

\displaystyle \$45.12

\displaystyle \$48.76

Correct answer:

\displaystyle \$48.76

Explanation:

Let \displaystyle x be the amount Jimmy had before buying groceries.

Since we know that he spent \displaystyle \$45.10 on groceries, we can write the following equation:

\displaystyle x-45.10=3.66

To solve for \displaystyle x, add \displaystyle 45.10 to both sides of the equation.

\displaystyle x-45.10+45.10=3.66+45.10

\displaystyle x=48.76

Jimmy had \displaystyle \$48.76 before buying groceries.

Example Question #93 : How To Solve One Step Equations

Solve for \displaystyle x:

\displaystyle 3x=-9

Possible Answers:

\displaystyle x=-2

\displaystyle x=3

\displaystyle x=2

\displaystyle x=-3

\displaystyle 3

Correct answer:

\displaystyle x=-3

Explanation:

To solve for \displaystyle x, you will need to get \displaystyle x on its own. To do so, divide both sides by \displaystyle 3.

\displaystyle 3x=-9 

\displaystyle \frac{3x}{3}=\frac{-9}{3}

\displaystyle x=-3

Example Question #94 : How To Solve One Step Equations

Solve for \displaystyle x:

\displaystyle 4x=\frac{1}{2}

Possible Answers:

\displaystyle x=8

\displaystyle x=\frac{1}{8}

\displaystyle x=2

\displaystyle x=\frac{1}{6}

Correct answer:

\displaystyle x=\frac{1}{8}

Explanation:

To solve for \displaystyle x, you will need to get \displaystyle x on its own. To do so, divide both sides by \displaystyle 2.

\displaystyle 4x=\frac{1}{2} 

\displaystyle 4x\div4=\frac{1}{2}\div4=\frac{1}{2}\times\frac{1}{4}

\displaystyle x=\frac{1}{8}

Example Question #95 : How To Solve One Step Equations

Solve for \displaystyle x:

\displaystyle -5x=\frac{1}{3}

Possible Answers:

\displaystyle x=-15

\displaystyle x=-\frac{1}{15}

\displaystyle x=\frac{5}{3}

\displaystyle x=-\frac{3}{5}

Correct answer:

\displaystyle x=-\frac{1}{15}

Explanation:

To solve for \displaystyle x, you will need to get \displaystyle x on its own. To do so, divide both sides by \displaystyle -5.

\displaystyle -5x=\frac{1}{3} 

\displaystyle -5x\div -5=\frac{1}{3}\div -5=\frac{1}{3}\times-\frac{1}{5}

\displaystyle x=-\frac{1}{15}

Example Question #96 : How To Solve One Step Equations

Catherine spends \displaystyle 4 more hours practicing basketball every week than Michael does. If Catherine spent \displaystyle 15 hours practicing basketball this week, how many hours did Michael practice baksetball?

Possible Answers:

\displaystyle 12

\displaystyle 7

\displaystyle 11

\displaystyle 16

\displaystyle 19

Correct answer:

\displaystyle 11

Explanation:

Let \displaystyle x be the number of hours Michael spends practicing.

We know from the question that Catherine spends \displaystyle 4 more hours practicing. We can then write the following expression to show the number of hours Catherine spends practicing in terms of \displaystyle x:

\displaystyle x+4

Since we also know that Catherine spent \displaystyle 15 hours practicing, we can then write the following equation:

\displaystyle x+4=15

To solve for \displaystyle x, subtract \displaystyle 4 from both sides.

\displaystyle x+4-4=15-4

\displaystyle x=11

Michael spent \displaystyle 11 hours practicing basketball.

Example Question #97 : Linear Equations

Solve for \displaystyle x:

\displaystyle x+9=8

Possible Answers:

\displaystyle x=17

\displaystyle x=1

\displaystyle x=8

\displaystyle x=-1

Correct answer:

\displaystyle x=-1

Explanation:

In order to solve for \displaystyle x, subtract \displaystyle 9 from both sides of the equation.

\displaystyle x+9=8

\displaystyle x+9-9=8-9

\displaystyle x=-1

Example Question #98 : Linear Equations

Solve for \displaystyle y:

\displaystyle y-6=9

Possible Answers:

\displaystyle y=-3

\displaystyle y=15

\displaystyle y=-6

\displaystyle y=3

Correct answer:

\displaystyle y=15

Explanation:

In order to solve for \displaystyle y, you will need to add \displaystyle 6 to both sides of the equation.

\displaystyle y-6=9

\displaystyle y-6+6=9+6

\displaystyle y=15

Example Question #91 : Algebra 1

Solve for \displaystyle y:

\displaystyle y-\frac{1}{2}=-2

Possible Answers:

\displaystyle y=2

\displaystyle y=-\frac{3}{2}

\displaystyle y=-1

\displaystyle y=-\frac{1}{2}

Correct answer:

\displaystyle y=-\frac{3}{2}

Explanation:

In order to solve for \displaystyle y, you will need to add \displaystyle \frac{1}{2} to both sides of the equation.

\displaystyle y-\frac{1}{2}=-2

\displaystyle y-\frac{1}{2}+\frac{1}{2}=-2+\frac{1}{2}

\displaystyle y=-\frac{4}{2}+\frac{1}{2}

\displaystyle y=-\frac{3}{2}

 

Example Question #100 : Linear Equations

Solve for \displaystyle y:

\displaystyle y-0.8=1

Possible Answers:

\displaystyle y=1.5

\displaystyle y=1.8

\displaystyle y=0.4

\displaystyle y=-0.2

Correct answer:

\displaystyle y=1.8

Explanation:

In order to solve for \displaystyle y, add \displaystyle 0.8 to both sides of the equation.

\displaystyle y-0.8=1

\displaystyle y-0.8+0.8=1+0.8

\displaystyle y=1.8

Learning Tools by Varsity Tutors