Algebra 1 : Functions and Lines

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #561 : Functions And Lines

Find the slope of the line if the line connects the points \displaystyle (5,-1) and \displaystyle (-9,9).

Possible Answers:

\displaystyle -\frac{5}{7}

\displaystyle 2

\displaystyle -\frac{5}{2}

\displaystyle \frac{5}{7}

\displaystyle -2

Correct answer:

\displaystyle -\frac{5}{7}

Explanation:

Write the formula for the slope.

\displaystyle m= \frac{y_2-y_1}{x_2-x_1}

Substitute the points.

\displaystyle m= \frac{9-(-1)}{-9-5} = \frac{10}{-14}

Reduce the fraction.

\displaystyle m= -\frac{5}{7}

The slope is \displaystyle -\frac{5}{7}.

Example Question #562 : Functions And Lines

Find the slope of the following line:

\displaystyle 18y = -72x + 36

Possible Answers:

\displaystyle 18

\displaystyle -4

\displaystyle -72

\displaystyle -3

\displaystyle 2

Correct answer:

\displaystyle -4

Explanation:

To find the slope of a line, we will write it in slope-intercept form

\displaystyle y = mx + b

where m is the slope.  Given the line

\displaystyle 18y = -72x + 36

we will need to solve for y, or get y to stand alone.  To do that, we will divide each term by 18.  So,

\displaystyle \frac{18y}{18} = \frac{-72x}{18} + \frac{36}{18}

\displaystyle y = -4x + 2

Using the information given above, we can see that the slope is -4.  

Example Question #563 : Functions And Lines

What is the slope of the line \displaystyle 3x-y+6=3x?

Possible Answers:

\displaystyle -3

\displaystyle 0

\displaystyle 6

\displaystyle 3

Correct answer:

\displaystyle 0

Explanation:

To find the slope of the line, we will need to re-format the equation back to slope-intercept form, \displaystyle y=mx+b.

Add \displaystyle y on both sides.

\displaystyle 3x-y+6+y=3x+y

\displaystyle 3x+6=3x+y

Subtract \displaystyle 3x on both sides.

\displaystyle 3x+6-3x=3x+y-3x

Simplify both sides.

\displaystyle y=6

This is a horizontal line and the value of \displaystyle m is zero.

The answer of the slope is:  \displaystyle 0

Example Question #564 : Functions And Lines

Give the slope of the line of the equation

\displaystyle 3x+2= 6y

Possible Answers:

\displaystyle 2

\displaystyle \frac{1}{3}

\displaystyle 3

\displaystyle 6

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \frac{1}{2}

Explanation:

Rewrite the equation in slope-intercept form \displaystyle y = mx+b:

\displaystyle 3x+2= 6y

\displaystyle 6y = 3x+2

\displaystyle 6y \div 6 = (3x+2) \div 6

\displaystyle y = \frac{3}{6} x+ \frac{2}{6}

\displaystyle y = \frac{1}{2} x+ \frac{1}{3}

The coefficient of \displaystyle x, which is \displaystyle \frac{1}{2}, is the slope of the line.

Example Question #565 : Functions And Lines

Give the slope of the line of the equation

\displaystyle 8y = 3x + 7

Possible Answers:

\displaystyle \frac{3}{7}

\displaystyle \frac{3}{8}

\displaystyle \frac{7}{8}

\displaystyle \frac{7}{3}

\displaystyle \frac{8}{3}

Correct answer:

\displaystyle \frac{3}{8}

Explanation:

Rewrite the equation in slope-intercept form \displaystyle y = mx+b:

\displaystyle 8y = 3x + 7

\displaystyle 8y \div 8 = (3x + 7) \div 8

\displaystyle y = \frac{3}{8}x+ \frac{7}{8}

The coefficient of \displaystyle x, which is \displaystyle \frac{3}{8}, is the slope of the line.

Example Question #151 : How To Find Slope Of A Line

Give the slope of the line of the equation

\displaystyle 7y+ 4x = 29

Possible Answers:

\displaystyle \frac{29}{7}

\displaystyle -\frac{7}{4}

\displaystyle \frac{29}{4}

\displaystyle \frac{7}{29}

\displaystyle -\frac{4}{7}

Correct answer:

\displaystyle -\frac{4}{7}

Explanation:

Rewrite the equation in slope-intercept form \displaystyle y = mx+b:

\displaystyle 7y+ 4x = 29

\displaystyle 7y+ 4x - 4x = 29 - 4x

\displaystyle 7y = -4x+ 29

\displaystyle 7y \div 7 = (-4x+ 29) \div 7

\displaystyle y = -\frac{4}{7}x + \frac{29}{7}

The coefficient of \displaystyle x, which is \displaystyle -\frac{4}{7}, is the slope of the line.

Example Question #161 : How To Find Slope Of A Line

Give the slope of the line of the equation

\displaystyle 9y - 4x = 30

Possible Answers:

\displaystyle -36

\displaystyle \frac{9}{4}

\displaystyle -\frac{9}{4}

\displaystyle -\frac{4}{9}

\displaystyle \frac{4}{9}

Correct answer:

\displaystyle \frac{4}{9}

Explanation:

Rewrite the equation in slope-intercept form \displaystyle y = mx+b:

\displaystyle 9y - 4x = 30

\displaystyle 9y - 4x + 4x = 30+ 4x

\displaystyle 9y = 4x+ 30

\displaystyle 9y \div 9 = (4x+ 30) \div 9

\displaystyle y = \frac{4}{9} x + \frac{30}{9}

\displaystyle y = \frac{4}{9} x + \frac{10}{3}

The coefficient of \displaystyle x, which is \displaystyle \frac{4}{9}, is the slope.

Example Question #566 : Functions And Lines

Give the slope of the line of the equation

\displaystyle x= 5y - 17

Possible Answers:

\displaystyle -5

The line has no slope

\displaystyle \frac{1}{5}

\displaystyle 5

\displaystyle -\frac{1}{5}

Correct answer:

\displaystyle \frac{1}{5}

Explanation:

Rewrite the equation in slope-intercept form \displaystyle y = mx+b:

\displaystyle x= 5y - 17

\displaystyle 5y - 17 = x

\displaystyle 5y - 17 + 17 = x + 17

\displaystyle 5y = x + 17

\displaystyle 5y \div 5 = (x + 17) \div 5

\displaystyle y= \frac{1}{5}x + \frac{17 }{5}

The coefficient of \displaystyle x, which is \displaystyle \frac{1}{5}, is the slope.

Example Question #161 : How To Find Slope Of A Line

Give the slope of the line of the equation

\displaystyle 7x + 6y = 33

Possible Answers:

\displaystyle -\frac{6}{7}

\displaystyle \frac{6}{7}

\displaystyle \frac{7}{6}

The correct answer is not among the other choices.

\displaystyle -\frac{7}{6}

Correct answer:

\displaystyle -\frac{7}{6}

Explanation:

Rewrite the equation in slope-intercept form \displaystyle y = mx+b:

\displaystyle 7x + 6y = 33

\displaystyle 7x + 6y - 7x = 33- 7x

\displaystyle 6y = -7x + 33

\displaystyle 6y \div 6 =( -7x + 33) \div 6

\displaystyle y = -\frac{7}{6}x + \frac{33}{6}

The coefficient of \displaystyle x, which is \displaystyle -\frac{7}{6}, is the slope.

Example Question #3851 : Algebra 1

Find the slope of a line given by the equation:  

\displaystyle y=2(2x-3)+4x

Possible Answers:

\displaystyle 8

\displaystyle 6

\displaystyle 2

\displaystyle 4

Correct answer:

\displaystyle 8

Explanation:

In order to find the slope of this equation, we will need to put this in y-intercept form, \displaystyle y=mx+b.

Simplify the equation by distribution and combine like-terms.

\displaystyle y=2(2x)+2(-3)+4x

Simplify the parentheses.

\displaystyle y=4x-6+4x

Add like terms.

\displaystyle y=8x-6

The slope is \displaystyle 8.

Learning Tools by Varsity Tutors