Algebra 1 : Equations of Lines

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #53 : How To Find The Length Of A Line With Distance Formula

Find the length of the line with the following endpoints:

\displaystyle (6,7)(-6,-7)

Possible Answers:

\displaystyle 2\sqrt{85}

\displaystyle 2\sqrt{87}

\displaystyle \sqrt{341}

\displaystyle \sqrt{337}

Correct answer:

\displaystyle 2\sqrt{85}

Explanation:

In order to find the distance between two points on a line, use the formula below:

\displaystyle \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}

Plug in the points (6,7) and (-6,-7) and solve:

\displaystyle \sqrt{(6+6)^{2}+(7+7)^{2}}=\sqrt{(12)^{2}+(14)^{2}}=\sqrt{144+196}=\sqrt{340}=2\sqrt{85}

 

This gives a final answer of \displaystyle 2\sqrt{85}

Example Question #54 : How To Find The Length Of A Line With Distance Formula

What is the distance of the line connected by the points \displaystyle (2,8) and \displaystyle (-3,6)?

Possible Answers:

\displaystyle 2\sqrt{5}

\displaystyle \sqrt{31}

\displaystyle \sqrt{29}

\displaystyle 3\sqrt{5}

\displaystyle \sqrt{21}

Correct answer:

\displaystyle \sqrt{29}

Explanation:

Use the distance formula to determine the line connected by the two points.

The distance formula is:

\displaystyle d= \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Let:

\displaystyle (x_1,y_1) = (2,8)

\displaystyle (x_2,y_2) =(-3,6)

Substitute the points into the formula.

\displaystyle d= \sqrt{(-3-2)^2+(6-8)^2}

Simplify the inner terms.

\displaystyle d= \sqrt{(-5)^2+(-2)^2}

\displaystyle d= \sqrt{25+4} = \sqrt{29}

The distance of the line connect by the two points is:  \displaystyle \sqrt{29}

Example Question #55 : How To Find The Length Of A Line With Distance Formula

Find the length of the line with the following endpoints:

\displaystyle (-5,-3)(4,2)

Possible Answers:

\displaystyle 4\sqrt{29}

\displaystyle 4\sqrt{27}

\displaystyle 4\sqrt{28}

\displaystyle \sqrt{106}

Correct answer:

\displaystyle \sqrt{106}

Explanation:

In order to find the distance between two points on a line, use the formula below:

\displaystyle \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}

Plug in the points (-5,-3) and (4,2) and solve:

\displaystyle \sqrt{(4+5)^{2}+(2+3)^{2}}=\sqrt{(9)^{2}+(5)^{2}}=\sqrt{81+25}=\sqrt{106}

 

This gives a final answer of \displaystyle \sqrt{106}

Example Question #56 : How To Find The Length Of A Line With Distance Formula

Find the length of the line with the following endpoints:

\displaystyle (4,9)(-2,-1)

Possible Answers:

\displaystyle 9\sqrt{5}

\displaystyle 2\sqrt{73}

\displaystyle \sqrt{136}

\displaystyle \sqrt{147}

Correct answer:

\displaystyle \sqrt{136}

Explanation:

In order to find the distance between two points on a line, use the formula below:

\displaystyle \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}

Plug in the points (4,9) and (-2,-1) and solve:

\displaystyle \sqrt{(9+1)^{2}+(4+2)^{2}}=\sqrt{(10)^{2}+(6)^{2}}=\sqrt{100+36}=\sqrt{136}

 

This gives a final answer of \displaystyle \sqrt{136}

Example Question #57 : How To Find The Length Of A Line With Distance Formula

Find the length of the line between the two points

\displaystyle (1, 5) and \displaystyle (-3, 4)

Possible Answers:

\displaystyle \sqrt{12}

\displaystyle \sqrt{17}

\displaystyle \sqrt{3}

\displaystyle \sqrt{85}

\displaystyle \sqrt{5}

Correct answer:

\displaystyle \sqrt{17}

Explanation:

To find the length between two points, we use the following distance formula:

\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

where \displaystyle (x_1, y_1) and \displaystyle (x_2, y_2) are the points given.

 

Using the given points

\displaystyle (1, 5) and \displaystyle (-3, 4)

we can substitute into the formula.  We get

 

\displaystyle d = \sqrt{(-3-1)^2 + (4-5)^2}

\displaystyle d = \sqrt{(-4)^2 + (-1)^2}

\displaystyle d = \sqrt{16 + 1}

\displaystyle d = \sqrt{17}

 

Therefore, the distance between the points \displaystyle (1, 5) and \displaystyle (-3, 4) is \displaystyle \sqrt{17}.

Example Question #58 : How To Find The Length Of A Line With Distance Formula

Find the length of the line between the points

\displaystyle (-3, -3) and \displaystyle (-5, -8)

Possible Answers:

\displaystyle \sqrt{7}

\displaystyle \sqrt{185}

\displaystyle \sqrt{-7}

\displaystyle \sqrt{37}

\displaystyle \sqrt{29}

Correct answer:

\displaystyle \sqrt{29}

Explanation:

To find the length between two points, we use the following distance formula:

\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

where \displaystyle (x_1, y_1) and \displaystyle (x_2, y_2) are the points given.

 

Using the given points

\displaystyle (-3, -3) and \displaystyle (-5, -8)

we can substitute into the formula.  We get

 

\displaystyle d = \sqrt{(-5 - -3)^2 + (-8 - -3)^2}

\displaystyle d = \sqrt{(-5+3)^2 + (-8+3)^2}

\displaystyle d = \sqrt{(-2)^2 + (-5)^2}

\displaystyle d = \sqrt{4 + 25}

\displaystyle d = \sqrt{29}

 

Therefore, the distance between the points \displaystyle (-3, -3) and \displaystyle (-5, -8) is \displaystyle \sqrt{29}.

Example Question #59 : How To Find The Length Of A Line With Distance Formula

If the line \displaystyle \overline{AB} is connected by the points \displaystyle (8,3) and \displaystyle (-3,5), what is the exact length of this line?

Possible Answers:

\displaystyle \sqrt{89}

\displaystyle 5\sqrt5

\displaystyle \sqrt{39}

\displaystyle \sqrt{29}

\displaystyle 5\sqrt2

Correct answer:

\displaystyle 5\sqrt5

Explanation:

Use the distance formula to determine the distance of this line.

\displaystyle d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Substitute the points into the equation.

\displaystyle d=\sqrt{(5-3)^2+(-3-8))^2}

Simplify the radical.

\displaystyle d=\sqrt{(2)^2+(-11)^2} = \sqrt{4+121} = \sqrt{125}

Pull out the common factors.  This radical can still be reduced.

\displaystyle \sqrt{125} = \sqrt{25}\cdot \sqrt5 =5\sqrt5

The exact length of the line is:  \displaystyle 5\sqrt5

Example Question #60 : How To Find The Length Of A Line With Distance Formula

Steven and Joel are on a massive grid. Steven is located at point \displaystyle (1,2) on the grid and Joel is located at \displaystyle (-1,-2). How far away from each other are they?

Possible Answers:

\displaystyle 5\sqrt{2}units

\displaystyle 2\sqrt{5}units

\displaystyle 20units

None of these

\displaystyle 3units

Correct answer:

\displaystyle 2\sqrt{5}units

Explanation:

The distance formula is:

\displaystyle d= \sqrt{(x_{1}-x_{_{2}})^2+(y_{1}-y_2)^2}

Plug in these points into the distance formula.

\displaystyle d=\sqrt{(1-(-1))^2+(2-(-2))^2}

\displaystyle d=\sqrt{(2^2)+4^2}

\displaystyle d=\sqrt{20}

Reduce:

\displaystyle d=\sqrt{4}*\sqrt{5}

\displaystyle d=2\sqrt{5}

Example Question #61 : How To Find The Length Of A Line With Distance Formula

Steven and Joel are on a massive grid. Steven is located at point \displaystyle (1,2) on the grid and Joel is located at \displaystyle (-2,-2). How far away from each other are they?

Possible Answers:

\displaystyle 5units

Cannot be determined

\displaystyle 2\sqrt5units

\displaystyle 20units

\displaystyle 5\sqrt{2}units

Correct answer:

\displaystyle 5units

Explanation:

The distance formula is:

\displaystyle d= \sqrt{(x_{1}-x_{_{2}})^2+(y_{1}-y_2)^2}

Plug in Seven and Joel's coordinates into this formula.

\displaystyle d= \sqrt{(1-(-2))^2+(2-(-2))^2}

\displaystyle d=\sqrt{(3^2)+4^2}

\displaystyle d=\sqrt{25}=5units

Example Question #62 : How To Find The Length Of A Line With Distance Formula

What is the distance of the line connected by the points \displaystyle (-3,-6) and \displaystyle (7,-3)?

Possible Answers:

\displaystyle \sqrt{97}

\displaystyle \sqrt{109}

\displaystyle 5

\displaystyle \sqrt{7}

\displaystyle \sqrt{17}

Correct answer:

\displaystyle \sqrt{109}

Explanation:

Write the distance formula.

\displaystyle D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Substitute the given points into the formula.

\displaystyle D=\sqrt{(7-(-3))^2+(-3-(-6))^2}

Simplify the terms inside the parentheses.

\displaystyle D=\sqrt{(10)^2+(3)^2} =\sqrt{100+9} = \sqrt{109}

The answer is: \displaystyle \sqrt{109}

Learning Tools by Varsity Tutors