Algebra 1 : Algebra 1

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #32 : Distributive Property

We usually use the FOIL method of distribution for expanding polynomials, but it is actually a property of numbers. Try to solve the product by foiling instead of computing directly.

\displaystyle 33*44=(30+3)(40+4)

Possible Answers:

\displaystyle 1512

\displaystyle 1212

\displaystyle 1200

\displaystyle 1452

\displaystyle 252

Correct answer:

\displaystyle 1452

Explanation:

Using the FOIL distribution method:

\displaystyle (30+3)(40+4)

First: \displaystyle 30*40 = 1200

Outer: \displaystyle 30*4= 120

Inner: \displaystyle 3*40 = 120

Last: \displaystyle 3*4=12

Resulting in: \displaystyle 1200 + 120 +120 +12 = 1452

Example Question #33 : Distributive Property

Expand and simplify.

\displaystyle (5x + t)(2x + 3t)

Possible Answers:

\displaystyle 10x^2 + 17x + 3t

\displaystyle x^2 + 7x + 4

\displaystyle 10x^2 + 17xt + 3t^2

\displaystyle x^2 + 5xt + 3t^2

\displaystyle 10x^2 + 13xt + 3t^2

Correct answer:

\displaystyle 10x^2 + 17xt + 3t^2

Explanation:

Using the FOIL distribution method:

\displaystyle (5x + t)(2x + 3t)

First: \displaystyle 5x*2x = 10x^2

Outer: \displaystyle 5x*3t= 15x t

Inner: \displaystyle t*2x = 2xt

Last: \displaystyle t*3t=3t^2

Resulting in: \displaystyle 10x^2 + 15xt + 2xt + 3t^2

Combining like terms, the \displaystyle xt's combine for a final answer of:

\displaystyle 10x^2 + 17xt + 3t^2

Example Question #34 : Distributive Property

Expand and simplify.

\displaystyle (x + y)(x - y)

Possible Answers:

\displaystyle x^2 -2xy + y^2

\displaystyle x^2 +2xy + y^2

\displaystyle x^2 + y^2

\displaystyle x^2 +xy- y^2

\displaystyle x^2 - y^2

Correct answer:

\displaystyle x^2 - y^2

Explanation:

Using the FOIL distribution method:

\displaystyle (x + y)(x - y)

First: \displaystyle x*x = x^2

Outer: \displaystyle x*-y= -xy

Inner: \displaystyle y*x = xy

Last: \displaystyle y*-y=-y^2

Resulting in: \displaystyle x^2 - xy + xy - y^2

Combining like terms, the \displaystyle xy's cancel for a final answer of:

\displaystyle x^2 - y^2

Expressions of this form are commonly referred to as "difference of squares". If you can spot them, they are easy to expand and to factor because the middle terms always cancel.

Example Question #32 : Distributive Property

Expand by FOILing:

\displaystyle (x+7)(x-2)

Possible Answers:

\displaystyle x^2-9x-14

\displaystyle x^2-5x-14

\displaystyle x^2+5x-14

\displaystyle x^2+9x-14

Correct answer:

\displaystyle x^2+5x-14

Explanation:

First: \displaystyle (x)(x)=x^2

Outside: \displaystyle (x)(-2)=-2x

Inside: \displaystyle (x)(7)=7x

Last: \displaystyle (-2)(7)=-14

Add the values together and combine like terms:

\displaystyle x^2-2x+7x-14=x^2+5x-14

Example Question #41 : How To Use Foil In The Distributive Property

Expand by FOILing:

\displaystyle (2n+4)(-n+3)

Possible Answers:

\displaystyle -2n^2+10n+12

\displaystyle 2n^2-2n+12

\displaystyle 2n^2-10n+12

\displaystyle -2n^2+2n+12

Correct answer:

\displaystyle -2n^2+2n+12

Explanation:

First: \displaystyle (2n)(-n)=-2n^2

Outside: \displaystyle (2n)(3)=6n

Inside: \displaystyle (4)(-n)=-4n

Last: \displaystyle (4)(3)=12

Add the values together and combine like terms:

\displaystyle -2n^2+6n-4n+12=-2n^2+2n+12

Example Question #41 : How To Use Foil In The Distributive Property

Use FOIL to combine like terms in the following expression:

\displaystyle \left ( 2x+5 \right )\left ( x+3 \right )

Possible Answers:

\displaystyle 2x+11x+15

\displaystyle 2x^{2}+11x+25

\displaystyle 2x^{2}+11x+15

\displaystyle 2x^{2}+5x+15

\displaystyle 2x^{2}+6x+15

Correct answer:

\displaystyle 2x^{2}+11x+15

Explanation:

\displaystyle \left ( 2x+5 \right )\left ( x+3 \right )

FOIL (first, outside, inside, last) is a device to help students remember to multiply every term by every other term exactly one time. The steps of using FOIL progress as follows:

1) Multiply the first term of each parenthetical expression together:

\displaystyle (2x)(x)=2x^2+...

2) Next, multiply the "outside" terms together:

\displaystyle (2x)(3)=6x

Add that to the first product, since the terms are all being added together in the parentheses, and the distributive property requires that we maintain the sign:

\displaystyle 2x^{2}+6x...

3) Multiply the "inside" terms together:

\displaystyle (5)(x)=5x

Add that to the first two products:

\displaystyle 2x^{2}+6x+5x...

4) Finally, multiply the last terms from each parenthetical expression together:

\displaystyle (5)(3)=15

Add all of the terms together and combine like terms where possible:

\displaystyle 2x^{2}+5x+6x+15=2x^{2}+11x+15

Example Question #41 : Distributive Property

Multiply the following expressions together using FOIL:

\displaystyle \left ( 5x+7 \right )\left ( 4x+12 \right )

Possible Answers:

\displaystyle 20x^{2}+88x+84

\displaystyle 20x+88x+84

\displaystyle 4x^{2}+88x+84

\displaystyle 5x^{2}+88x+84

\displaystyle 20x^{2}+60x+84

Correct answer:

\displaystyle 20x^{2}+88x+84

Explanation:

\displaystyle \left ( 5x+7 \right )\left ( 4x+12 \right )

FOIL (first, outside, inside, last) is a device to help students remember to multiply every term by every other term exactly one time. The steps of using FOIL progress as follows:

1) Multiply the first term of each parenthetical expression together:

\displaystyle (4x)(5x)=20x^2+...

2) Next, multiply the "outside" terms together:

\displaystyle (5x)(12)=60x

Add that to the first product, since the terms are all being added together in the parentheses, and the distributive property requires that we maintain the sign:

\displaystyle 20x^{2}+60x...

3) Multiply the "inside" terms together:

\displaystyle (7)(4x)=28x

Add that to the first two products:

\displaystyle 20x^{2}+60x+28x...

4) Finally, multiply the last terms from each parenthetical expression together:

\displaystyle (7)(12)=84

Add all of the terms together and combine like terms where possible:

\displaystyle 20x^{2}+60x+28x+84=20x^{2}+88x+84

Example Question #42 : Distributive Property

We usually use the FOIL method of distribution for expanding polynomials, but it is actually a property of numbers.  Try to solve the product by foiling instead of computing directly.

\displaystyle 49*51 = (50-1)(50+1)

Possible Answers:

\displaystyle 2500

\displaystyle 4951

\displaystyle 2601

\displaystyle 2499

\displaystyle 100

Correct answer:

\displaystyle 2499

Explanation:

Using the FOIL distribution method:

\displaystyle (50-1)(50+1)

First: \displaystyle 50*50 = 2500

Outer: \displaystyle 50*1= 50

Inner: \displaystyle -1*50 = -50

Last: \displaystyle -1*1=-1

Resulting in: \displaystyle 2500 + 50 - 50 - 1

The 50's cancel leaving us with:

\displaystyle 2500 -1 = 2499

Example Question #42 : Distributive Property

Expand and simplify.

\displaystyle (2x + 3y)(3x + 2y)

Possible Answers:

\displaystyle x^2 + 5xy + 6y^2

\displaystyle 6x^2 + 12xy + 6y^2

\displaystyle 6x^2 + 13x + 6

\displaystyle 6x^2 + 12x + 6

\displaystyle 6x^2 + 13xy + 6y^2

Correct answer:

\displaystyle 6x^2 + 13xy + 6y^2

Explanation:

Using the FOIL distribution method:

\displaystyle (2x + 3y)(3x + 2y)

First: \displaystyle 2x*3x = 6x^2

Outer: \displaystyle 2x*2y= 4xy

Inner: \displaystyle 3y*3x = 9xy

Last: \displaystyle 3y*2y=6y^2

Resulting in: \displaystyle 6x^2 + 4xy + 9xy + 6y^2

Combining like terms, the \displaystyle xy's combine for a final answer of:

\displaystyle 6x^2 + 13xy + 6y^2

Example Question #42 : Distributive Property

Use the FOIL method to simplify the expression \displaystyle (5x+3)(2x-1)-3(x+4).

Possible Answers:

\displaystyle 10x^{2}+x-3

\displaystyle 10x^{2}+2x+15

\displaystyle 10x^{2}-2x-15

\displaystyle 13x^{2}-2x+15

\displaystyle 15x^{2}+6x-12

Correct answer:

\displaystyle 10x^{2}-2x-15

Explanation:

Begin by considering the first part of this expression, \displaystyle (5x+3)(2x-1). Multiplying the first terms gives 

\displaystyle (5x)(2x)=10x^{2}

The product of the outside terms is \displaystyle -5x and that of the inside terms is \displaystyle 6x, and the product of the last terms is \displaystyle -3. Altogether, this yields 

\displaystyle 10x^{2}+x-3 

as the value of the first part of the expression.

Finally, we just need to add the value of the second part,

\displaystyle -3(x+4)=-3x-12

The final, simplified value of the expression is \displaystyle 10x^{2}-2x-15.

Learning Tools by Varsity Tutors