Advanced Geometry : How to find the area of a rhombus

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : How To Find The Area Of A Rhombus

Find the area of the rhombus below.

2

Possible Answers:

\displaystyle 203.02

\displaystyle 109.51

\displaystyle 101.51

\displaystyle 187.51

Correct answer:

\displaystyle 203.02

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{15^2-(\frac{16}{2})^2}=2\sqrt{161}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(16)(2\sqrt{161})}{2}=203.02

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #22 : How To Find The Area Of A Rhombus

Find the area of the rhombus below.

6

Possible Answers:

\displaystyle 29.58

\displaystyle 21.03

\displaystyle 26.83

\displaystyle 25.48

Correct answer:

\displaystyle 26.83

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{7^2-(\frac{4}{2})^2}=2\sqrt{45}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(4)(2\sqrt{45})}{2}=26.83

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #21 : Rhombuses

Find the area of the rhombus below.

5

Possible Answers:

\displaystyle 17.43

\displaystyle 21.20

\displaystyle 31.11

\displaystyle 32.98

Correct answer:

\displaystyle 17.43

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{6^2-(\frac{3}{2})^2}=2\sqrt{\frac{135}{4}}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(3)(2\sqrt{\frac{135}{4}})}{2}=17.43

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #21 : Rhombuses

Find the area of the rhombus below.

4

Possible Answers:

\displaystyle 4.97

\displaystyle 5.20

\displaystyle 14.42

\displaystyle 21.09

Correct answer:

\displaystyle 4.97

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{5^2-(\frac{1}{2})^2}=2\sqrt{\frac{99}{4}}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(1)(2\sqrt{\frac{99}{4}})}{2}=4.97

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #111 : Quadrilaterals

Find the area of the rhombus below.

3

Possible Answers:

\displaystyle 34.42

\displaystyle 41.28

\displaystyle 23.92

\displaystyle 20.40

Correct answer:

\displaystyle 23.92

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{12^2-(\frac{2}{2})^2}=2\sqrt{143}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(2)(2\sqrt{143})}{2}=23.92

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #23 : How To Find The Area Of A Rhombus

Find the area of the rhombus below.

7

Possible Answers:

\displaystyle 24.19

\displaystyle 35.51

\displaystyle 36.02

\displaystyle 39.19

Correct answer:

\displaystyle 39.19

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{10^2-(\frac{4}{2})^2}=2\sqrt{96}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(4)(2\sqrt{96})}{2}=39.19

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #111 : Plane Geometry

Find the area of the rhombus below.

8

Possible Answers:

\displaystyle 28.55

\displaystyle 26.46

\displaystyle 30.09

\displaystyle 32.69

Correct answer:

\displaystyle 32.69

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{11^2-(\frac{3}{2})^2}=2\sqrt{\frac{475}{4}}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(3)(2\sqrt{\frac{475}{4}})}{2}=32.69

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #112 : Plane Geometry

Find the area of the rhombus below.

9

Possible Answers:

\displaystyle 82.05

\displaystyle 79.58

\displaystyle 83.45

\displaystyle 77.02

Correct answer:

\displaystyle 82.05

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{14^2-(\frac{6}{2})^2}=2\sqrt{187}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(6)(2\sqrt{187})}{2}=82.05

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #111 : Plane Geometry

Find the area of the rhombus below.

11

Possible Answers:

\displaystyle 190.04

\displaystyle 185.73

\displaystyle 186.98

\displaystyle 171.20

Correct answer:

\displaystyle 185.73

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{15^2-(\frac{14}{2})^2}=2\sqrt{176}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(14)(2\sqrt{176})}{2}=185.73

Make sure to round to \displaystyle 2 places after the decimal.

 

Example Question #113 : Plane Geometry

Find the area of the rhombus below.

12

Possible Answers:

\displaystyle 102.49

\displaystyle 109.77

\displaystyle 101.07

\displaystyle 98.55

Correct answer:

\displaystyle 109.77

Explanation:

13

Recall that the diagonals of the rhombus are perpendicular bisectors. From the given side and the given diagonal, we can find the length of the second diagonal by using the Pythagorean Theorem.

\displaystyle \text{side}^2=(\frac{\text{diagonal 1}}{2})^2-(\frac{\text{diagonal 2}}{2})^2

Let the given diagonal be diagonal 1, and rearrange the equation to solve for diagonal 2.

\displaystyle (\frac{\text{diagonal 2}}{2})^2=\text{side}^2-(\frac{\text{diagonal 1}}{2})^2

\displaystyle (\frac{\text{diagonal 2}}{2})=\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

\displaystyle \text{diagonal 2}=2\sqrt{\text{side}^2-(\frac{\text{diagonal 1}}{2})^2}

Plug in the given side and diagonal to find the length of diagonal 2.

\displaystyle \text{diagonal 2}=2\sqrt{13^2-(\frac{9}{2})^2}=2\sqrt{\frac{595}{4}}

Now, recall how to find the area of a rhombus:

\displaystyle \text{Area of Rhombus}=\frac{(\text{diagonal 1})(\text{diagonal 2})}{2}

Plug in the two diagonals to find the area.

\displaystyle \text{Area of Rhombus}=\frac{(9)(2\sqrt{\frac{595}{4}})}{2}=109.77

Make sure to round to \displaystyle 2 places after the decimal.

 

Learning Tools by Varsity Tutors