ACT Math : How to find the area of an acute / obtuse isosceles triangle

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Acute / Obtuse Isosceles Triangles

What is the area of an isosceles triangle with a vertex of \displaystyle 120 degrees and two sides equal to \displaystyle 4\:cm?

Possible Answers:

\displaystyle 12\sqrt{3}\:cm^2

\displaystyle 15\sqrt{2}\:cm^2

\displaystyle 20\:cm^2

\displaystyle 20\sqrt{3}\:cm^2

\displaystyle 4\sqrt{3}\:cm^2

Correct answer:

\displaystyle 4\sqrt{3}\:cm^2

Explanation:

Based on the description of your triangle, you can draw the following figure:

_tri71

You can do this because you know:

  1. The two equivalent sides are given.
  2. Since a triangle is \displaystyle 180 degrees, you have only \displaystyle 180-120 or \displaystyle 60 degrees left for the two angles of equal size. Therefore, those two angles must be \displaystyle 30 degrees and \displaystyle 30 degrees.

Now, based on the properties of an isosceles triangle, you can draw the following as well:

_tri72

Based on your standard reference \displaystyle 30-60-90 triangle, you know:

\displaystyle \frac{h}{4}=\frac{1}{2}

Therefore, \displaystyle h is \displaystyle 2.

This means that \displaystyle x is \displaystyle 2\sqrt{3} and the total base of the triangle is \displaystyle 4\sqrt{3}.

Now, the area of the triangle is:

\displaystyle \frac{1}{2}bh or \displaystyle \frac{1}{2}*2*4\sqrt{3}=4\sqrt{3}\:cm^2

Example Question #1 : Acute / Obtuse Isosceles Triangles

An isosceles triangle has a height of \displaystyle 4 and a base of \displaystyle 7. What is its area?

Possible Answers:

\displaystyle 24

\displaystyle 28

\displaystyle 17

\displaystyle 14

Correct answer:

\displaystyle 14

Explanation:

Use the formula for area of a triangle:

\displaystyle A=\frac{1}{2}(base)(height)

\displaystyle A=\frac{1}{2}(4)(7)=14

Example Question #2 : Acute / Obtuse Isosceles Triangles

An isosceles triangle has a base length of \displaystyle 10 and a height that is twice its base length. What is the area of this triangle?

Possible Answers:

\displaystyle 150

\displaystyle 200

\displaystyle 50

\displaystyle 100

Correct answer:

\displaystyle 100

Explanation:

1. Find the height of the triangle:

\displaystyle height=2\cdot base

\displaystyle height=2(10)=20

2. Use the formula for area of a triangle:

\displaystyle A=\frac{1}{2}(b)(h)

\displaystyle A=\frac{1}{2}(10)(20)=100

Learning Tools by Varsity Tutors