ACT Math : Basic Squaring / Square Roots

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #31 : Arithmetic

Solve for :

Possible Answers:

Correct answer:

Explanation:

To begin solving this problem, find the greatest perfect square for all quantities under a radical.  might seem intimidating, but remember that raising even single-digit numbers to the fourth power creates huge numbers. In this case,  is divisible by , a perfect fourth power.

 ---> 

Pull the perfect terms out of each term on the left:

 ---> 

Next, factor out  from the left-hand side:

 ---> 

Lastly, isolate , remembering to simplify the fraction where possible:

 ---> 

Example Question #11 : Basic Squaring / Square Roots

Simplify: 

Possible Answers:

Correct answer:

Explanation:

To start, begin pulling the largest perfect square you can out of each number:

So, . You can just add the two terms together once they have a common radical.

Example Question #11 : Basic Squaring / Square Roots

Simplify: 

Possible Answers:

Correct answer:

Explanation:

Again here, it is easiest to recognize that both of our terms are divisible by , a prime number likely to appear in our final answer:

Now, simplify our perfect squares:

Lastly, subtract our terms with a common radical:

Example Question #11 : Basic Squaring / Square Roots

Solve for 

Possible Answers:

Correct answer:

Explanation:

To begin solving this problem, find the greatest common perfect square for all quantities under a radical.

 ---> 

Factor out the square root of each perfect square:

 ---> 

Next, factor out  from each term on the left-hand side of the equation:

 ---> 

Lastly, isolate :

 ---> 

Example Question #11 : Basic Squaring / Square Roots

Find the product:

 

Possible Answers:

Correct answer:

Explanation:

Simplify the radicals, then multiply:

Example Question #41 : Arithmetic

Simplify the following completely:

Possible Answers:

Correct answer:

Explanation:

To simplify this expression, simply multiply the radicands and reduce to simplest form.

Example Question #1 : How To Multiply Square Roots

Simplify:

Possible Answers:

Correct answer:

Explanation:

When multiplying square roots, the easiest thing to do is first to factor each root. Thus:

Now, when you combine the multiplied roots, it will be easier to come to your final solution. Just multiply together everything "under" the roots:

Finally this can be simplified as:

Example Question #4 : Square Roots And Operations

Simplify the following:

Possible Answers:

Correct answer:

Explanation:

When multiplying square roots, the easiest thing to do is first to factor each root. Thus:

Now, when you combine the multiplied roots, it will be easier to come to your final solution. Remember that multiplying roots is very easy! Just multiply together everything "under" the roots:

Finally this can be simplified as:

Example Question #5 : Square Roots And Operations

State the product: 

Possible Answers:

Correct answer:

Explanation:

Don't try to do too much at first for this problem. Multiply your radicals and your coefficients, then worry about any additional simplification.

Now simplify the radical.

Example Question #6 : Square Roots And Operations

Find the product: 

Possible Answers:

Correct answer:

Explanation:

Don't try to do too much at first for this problem. Multiply your radicals and your coefficients, then worry about any additional simplification.

Now, simplify your radical.

Learning Tools by Varsity Tutors