All ACT Math Resources
Example Questions
Example Question #901 : Algebra
Simplify the following:
With problems like this, it is always best to break apart your values into their prime factors. Let's look at the numerator and the denominator separately:
Numerator
Continuing the simplification:
Now, these factors have in common a . Factor this out:
Denominator
This is much simpler:
Now, return to your fraction:
Cancel out the common factors of :
Example Question #902 : Algebra
What digit appears in the units place when is multiplied out?
This problem is quite simple if you recall that the units place of powers of 2 follows a simple 4-step sequence.
Observe the first few powers of 2:
21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, 28 = 256 . . .
The units place follows a sequence of 2, 4, 8, 6, 2, 4, 8, 6, etc. Thus, divide 102 by 4. This gives a remainder of 2.
The second number in the sequence is 4, so the answer is 4.
Example Question #22 : Algebra
Which of the following is a multiple of ?
For exponent problems like this, the easiest thing to do is to break down all the numbers that you have into their prime factors. Begin with the number given to you:
Now, in order for you to have a number that is a multiple of this, you will need to have at least in the prime factorization of the given number. For each of the answer choices, you have:
; This is the answer.
Example Question #23 : Pattern Behaviors In Exponents
Simplify the following:
Because the numbers involved in your fraction are so large, you are going to need to do some careful manipulating to get your answer. (A basic calculator will not work for something like this.) These sorts of questions almost always work well when you isolate the large factors and notice patterns involved. Let's first focus on the numerator. Go ahead and break apart the into its prime factors:
Note that these have a common factor of . Therefore, you can rewrite the numerator as:
Now, put this back into your fraction:
Example Question #1 : Expressions
Simplify the following:
To simplify the following, a common denominator must be achieved. In this case, the first term must be multiplied by (x+2) in both the numerator and denominator and likewise with the second term with (x-3).
Example Question #903 : Algebra
Simplify the following
Find the least common denominator between x-3 and x-4, which is (x-3)(x-4). Therefore, you have . Multiplying the terms out equals . Combining like terms results in .
Example Question #3 : Rational Expressions
Simplify the following expression:
In order to add fractions, we must first make sure they have the same denominator.
So, we multiply by and get the following:
Then, we add across the numerators and simplify:
Example Question #1 : Rational Expressions
Combine the following two expressions if possible.
For binomial expressions, it is often faster to simply FOIL them together to find a common trinomial than it is to look for individual least common denominators. Let's do that here:
FOIL and simplify.
Combine numerators.
Thus, our answer is
Example Question #2 : Rational Expressions
Select the expression that is equivalent to
To add the two fractions, a common denominator must be found. With one-term denominators, it is easier to simply find the least common denominator between them and multiply each side to obtain it.
In this case, the least common denominator between and is . So the first fraction needs to be multiplied by and the second by :
Now, we can add straight across, remembering to combine terms where we can.
So, our simplified answer is
Example Question #2 : Expressions
Find the product of and .
Solve the first equation for .
Solve the second equation for .
The final step is to multiply and .