Trigonometry : Understanding Trigonometric Equations

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #6 : Factoring Trigonometric Equations

Factor the following expression

\(\displaystyle sin^{2n}(x)+2sin^n(x)+3\) where \(\displaystyle n\) is assumed to be a positive integer.

Possible Answers:

\(\displaystyle (sin^nx+1)(sin^nx+2)\)

\(\displaystyle (sin^nx+1)(sin^nx-2)\)

\(\displaystyle (2sin^nx+1)(sin^nx-2)\)

We cannot factor the above expression.

\(\displaystyle (sin^nx-1)(sin^nx-2)\)

Correct answer:

We cannot factor the above expression.

Explanation:

Letting \(\displaystyle sin^n(x)=X\), we have the equivalent expression:

\(\displaystyle X^2+2X+3\).

We cant factor \(\displaystyle X^2+2X+3\) since \(\displaystyle X^2+2X+3=(x+1)^2+2 >0 \forall \quadx\in\mathbb{R}\).

This shows that we cannot factor the above expression.

Example Question #1 : Factoring Trigonometric Equations

Factor

\(\displaystyle 1-cos^{11}x\)

Possible Answers:

\(\displaystyle (2-cosx)(cos^{10}x+cos^{9}x+...cosx+1)\)

\(\displaystyle (-1-cosx)(cos^{10}x+cos^{9}x+...cosx+1)\)

\(\displaystyle (1-cosx)(cos^{11}x+cos^{9}x+...cosx+1)\)

\(\displaystyle (1-cosx)(cos^{10}x+cos^{9}x+...cosx-1)\)

\(\displaystyle (1-cosx)(cos^{10}x+cos^{9}x+...cosx+1)\)

Correct answer:

\(\displaystyle (1-cosx)(cos^{10}x+cos^{9}x+...cosx+1)\)

Explanation:

We first note that we have:

\(\displaystyle 1-a^{11}=(1-a)(a^{10}+a^9+...a+1)\)

Then taking \(\displaystyle a=cos(x)\), we have the result.

\(\displaystyle (1-cosx)(cos^{10}x+cos^{9}x+...cosx+1)\)

Example Question #4 : Factoring Trigonometric Equations

Find a simple expression for the following :

\(\displaystyle cos^{2n}x-cos^{2n+2} x\)

Possible Answers:

\(\displaystyle -cos^{2n}xsin^{2}x\)

\(\displaystyle 3sinx\)

\(\displaystyle cos^{2n}xsin^{2}x\)

\(\displaystyle cos^{2n}x (1-sin^{2}x)\)

\(\displaystyle 2cos^{2n}xsin^{2}x\)

Correct answer:

\(\displaystyle cos^{2n}xsin^{2}x\)

Explanation:

First of all we know that :

\(\displaystyle cos^2x+sin^2x=1\) and this gives:

\(\displaystyle 1-cos^2{x}=sin^{2}x\).

Now we need to see that: \(\displaystyle cos^{2n}x-cos^{2n+2} x\) can be written as

\(\displaystyle cos^{2n}x(1-cos^2x)\) and since \(\displaystyle 1-cos^2{x}=sin^{2}x\)

we have then:

\(\displaystyle cos^{2n}x(1-cos^2x)=cos^{2n}xsin^2x\).

 

 

Example Question #21 : Understanding Trigonometric Equations

What is a simple expression for the formula:

\(\displaystyle cos^{3}x-sin^{3}x\)

Possible Answers:

\(\displaystyle (cosx-sinx)(2-cosx sinx)\)

\(\displaystyle (cosx+sinx)(1+cosx sinx)\)

\(\displaystyle (cosx-sinx)(1+3cosx sinx)\)

\(\displaystyle 2(cosx-sinx)(1+cosx sinx)\)

\(\displaystyle (cosx-sinx)(1+cosx sinx)\)

Correct answer:

\(\displaystyle (cosx-sinx)(1+cosx sinx)\)

Explanation:

From the expression :

\(\displaystyle a^3-b^3=(a-b)(a^2+ab+b^2)\)

we have:

\(\displaystyle cos^{3}x-sin^{3}x=(cosx-sinx)(cos^2x+cosxsinx+sin^2x)\)

 

Now since we know that :

\(\displaystyle cos^2x+sin^2x=1\). This expression becomes:

\(\displaystyle cos^{3}x-sin^{3}x=(cosx-sinx)(1+cosxsinx)\).

This is what we need to show.

Example Question #22 : Understanding Trigonometric Equations

Factor: \(\displaystyle (sin^4x-cos^4x)\)

Possible Answers:

\(\displaystyle (sinx-cosx)(sinx+cosx)\)

\(\displaystyle (sin^2x-cos^2x)(sin^2x+cos^2x)\)

\(\displaystyle (sin^2x+cos^2x)(sinx+cosx)\)

\(\displaystyle -(sin^2x+cos^2x)(sinx-cosx)\)

Correct answer:

\(\displaystyle (sinx-cosx)(sinx+cosx)\)

Explanation:

Step 1: Recall the difference of squares (or powers of four) formula:

\(\displaystyle x^4-y^4=(x^2+y^2)(x^2-y^2)=(x^2+y^2)(x-y)(x+y)\)

Step 2: Factor the question:

\(\displaystyle (sin^4x-cos^4x)=(sin^2x+cos^2x)(sin^2x-cos^2x)\)

Factor more:

\(\displaystyle (sin^2x+cos^2x)(sinx+cosx)(sinx-cosx)\)

Step 3: Recall a trigonometric identity:

\(\displaystyle sin^2x+cos^2x=1\).. Replace this

Final Answer: \(\displaystyle (sinx+cosx)(sinx-cosx)\)

Learning Tools by Varsity Tutors