SSAT Upper Level Math : How to find whether lines are perpendicular

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : How To Find Whether Lines Are Perpendicular

Lines 1 and 2, which are perpendicular, have their \displaystyle y-intercepts at the point \displaystyle (0, 8). The \displaystyle x-intercept of Line 1 is at the point \displaystyle (5,0). Give the \displaystyle x-intercept of Line 2.

Possible Answers:

\displaystyle \left ( \frac{5 }{64}, 0\right )

\displaystyle \left ( 12 \frac{4}{5}, 0 \right )

\displaystyle \left ( -12 \frac{4}{5}, 0 \right )

\displaystyle \left (-\frac{5 }{64}, 0\right )

\displaystyle (-5,0)

Correct answer:

\displaystyle \left ( -12 \frac{4}{5}, 0 \right )

Explanation:

The slope of a line with \displaystyle x-intercept \displaystyle (a, 0) and \displaystyle y-intercept \displaystyle (0, b) is \displaystyle m = -\frac {b}{a}. For Line 1, \displaystyle b= 8, a= 5, so Line 1 has slope \displaystyle -\frac{8}{5}. The slope of Line 2, which is perpendicular to Line 1, will be the opposite of the reciprocal of this, which is \displaystyle \frac{5}{8}. Setting \displaystyle m equal to this and \displaystyle b=8, we get

\displaystyle \frac{5}{8}= -\frac {8}{a}, or \displaystyle \frac{5}{8}= \frac {-8}{a}

Cross-multiplying:

\displaystyle 5a = -64

\displaystyle \frac{5a }{5}= \frac{-64}{5}

\displaystyle a = -12 \frac{4}{5}

The \displaystyle x-intercept of Line 2 is \displaystyle \left ( -12 \frac{4}{5}, 0 \right ).

Example Question #12 : How To Find Whether Lines Are Perpendicular

Which of the following choices gives the equations of a pair of perpendicular lines with the same \displaystyle y-intercept?

Possible Answers:

\displaystyle y = 2x+ 6 and \displaystyle y = \frac{1}{2}x + 6

\displaystyle y = 4x-8 and \displaystyle y = - \frac{1}{4}x + \frac{1}{8}

\displaystyle y = \frac{2}{5}x + 9 and \displaystyle y = - \frac{5}{2}x + 9

\displaystyle y = 3x+ 7 and \displaystyle y = -3x + 7

\displaystyle y = \frac{1}{3}x + \frac{2}{3} and \displaystyle y = - \frac{1}{3}x - \frac{2}{3}

Correct answer:

\displaystyle y = \frac{2}{5}x + 9 and \displaystyle y = - \frac{5}{2}x + 9

Explanation:

All of the equations are given in slope-intercept form \displaystyle y = mx+b, so we can answer this question by examining the coefficients of \displaystyle x, which are the slopes, and the constants, which are the \displaystyle y-intercepts. In each case, since the lines are perpendicular, each \displaystyle x-coefficient must be the other's opposite reciprocal, and since the lines have the same \displaystyle y-intercept, the constants must be equal.

Of the five pairs, only 

\displaystyle y = 4x-8 and \displaystyle y = - \frac{1}{4}x + \frac{1}{8}

and 

\displaystyle y = \frac{2}{5}x + 9 and \displaystyle y = - \frac{5}{2}x + 9

have equations whose \displaystyle x-coefficients are the other's opposite reciprocal. Of these, only the latter pair of equations have equal constant terms. 

\displaystyle y = \frac{2}{5}x + 9 and \displaystyle y = - \frac{5}{2}x + 9

is the correct choice.

Example Question #13 : How To Find Whether Lines Are Perpendicular

Given: the following three lines on the coordinate plane:

Line 1: The line of the equation \displaystyle x+2y = 12

Line 2: The line of the equation \displaystyle 2x+y= 12

Line 3: The line of the equation \displaystyle y=2 x

Which of the following is a true statement?

Possible Answers:

None of the other responses is correct.

No two of Line 1, Line 2, or Line 3 form a pair of perpendicular lines.

Line 1 and Line 3 are perpendicular; Line 2 is perpendicular to neither.

Line 2 and Line 3 are perpendicular; Line 1 is perpendicular to neither.

Line 1 and Line 2 are perpendicular; Line 3 is perpendicular to neither.

Correct answer:

Line 1 and Line 3 are perpendicular; Line 2 is perpendicular to neither.

Explanation:

The slope of each line can be calculated by putting the equation in slope-intercept form \displaystyle y = mx+b and noting the coefficient of \displaystyle x:

 

Line 1:

\displaystyle x+2y = 12

\displaystyle x+2y - x = 12 - x

\displaystyle 2y = -1x + 12

\displaystyle \frac{2y }{2}= \frac{-1x + 12}{2}

\displaystyle y= -\frac{1}{2}x+6

Slope of Line 1: \displaystyle -\frac{1}{2}

 

Line 2: 

\displaystyle 2x+y= 12

\displaystyle 2x+y - 2x= 12 - 2x

\displaystyle y = -2x+12

Slope of Line 2: \displaystyle -2

 

Line 3: The equation is already in slope-intercept form; its slope is 2.

 

Two lines are perpendicular if and only their slopes have product \displaystyle -1. The slopes of Lines 1 and 3 have product \displaystyle -\frac{1}{2} \cdot 2 = -1; they are perpendicular. The slopes of Lines 1 and 2 have product \displaystyle -\frac{1}{2} \cdot (- 2 )= 1; they are not perpendicular. The slopes of Lines 2 and 3 have product \displaystyle -2 \cdot 2 = -4; they are not perpendicular. 

Correct response: Line 1 and Line 3 are perpendicular; Line 2 is perpendicular to neither.

Learning Tools by Varsity Tutors