SSAT Upper Level Math : How to find the volume of a pyramid

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Volume Of A Pyramid

A given right rectangular pyramid has a base length and base width of \displaystyle 60\:m, as well as a height of \displaystyle 70\:m. What is the volume of the pyramid?

Possible Answers:

\displaystyle 84000\:m^{3}

Not enough information provided

\displaystyle 252,000\:m^{3}

\displaystyle 364,500\:m^{3}

\displaystyle 124,000\:m^3

Correct answer:

\displaystyle 84000\:m^{3}

Explanation:

The volume \displaystyle V of a right rectangular pyramid with base length \displaystyle l, base width \displaystyle w, and height \displaystyle h can be determined with the following formula:

\displaystyle V=\frac{lwh}{3}.

Plugging in our given values for each variable, we have

\displaystyle V=\frac{60\:m\times 60\:m\times 70\:m}{3}

\displaystyle V=\frac{252000\:m^{3}}{3}

\displaystyle V=84000\:m^{3}

Example Question #2 : How To Find The Volume Of A Pyramid

A given right rectangular pyramid has a base length of \displaystyle 100\:m, a base width of \displaystyle 50\:m, and a height of \displaystyle 75\:m. What is the volume of the pyramid?

Possible Answers:

\displaystyle 225\:m^{3}

\displaystyle 375,000\:m^{2}

\displaystyle 125,000\:m^{3}

\displaystyle 125,000\:m^{2}

\displaystyle 375,000\:m^{3}

Correct answer:

\displaystyle 125,000\:m^{3}

Explanation:

The volume \displaystyle V of a right rectangular pyramid with base length \displaystyle l, base width \displaystyle w, and height \displaystyle h can be determined with the following formula:

\displaystyle V=\frac{lwh}{3}.

Plugging in our given values for each variable, we have

\displaystyle V=\frac{100\:m\times 50\:m\times 75\:m}{3}

\displaystyle V=\frac{375000\:m^{3}}{3}

\displaystyle V=125000\:m^{3}

Example Question #1 : How To Find The Volume Of A Pyramid

A given rectangular pyramid has a base length of \displaystyle 5\:m, a base width of \displaystyle 3\:m, and a height of \displaystyle 7\:m. What is the volume of the pyramid?

Possible Answers:

\displaystyle 35\:m^{3}

\displaystyle 124\:m^3

Cannot be determined with the information provided

\displaystyle 72\:m^3

\displaystyle 105\:m^{3}

Correct answer:

\displaystyle 35\:m^{3}

Explanation:

The volume \displaystyle V of a right rectangular pyramid with base length \displaystyle l, base width \displaystyle w, and height \displaystyle h can be determined with the following formula:

\displaystyle V=\frac{lwh}{3}.

Plugging in our given values for each variable, we have

\displaystyle V=\frac{5\:m\times 3\:m\times 7\:m}{3}

In this instance, since we have a \displaystyle 3 in both the numerator and the denominator, we can reduce the formula to:

\displaystyle V=5\:m\times1\:m\times7\:m

\displaystyle V=35\:m^{3}

Example Question #4 : How To Find The Volume Of A Pyramid

A rectangular pyramid has a width of \displaystyle 4m, a height of \displaystyle 7m, and a length of \displaystyle 3m. What is the volume of this pyramid, in cubic meters?

Possible Answers:

\displaystyle 84

\displaystyle 36

\displaystyle 28

\displaystyle 48

Correct answer:

\displaystyle 28

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a rectangular pyramid, the base of the pyramid is a rectangle. Find the area of the rectangle.

\displaystyle \text{Area}=\text{length}\times\text{width}

\displaystyle \text{Area}=4\times3=12

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{12\times7}{3}=\frac{84}{3}=28

 

Example Question #1 : How To Find The Volume Of A Pyramid

A rectangular pyramid has a length of \displaystyle 12m, a width of \displaystyle 4m, and a height of \displaystyle 5m. In cubic meters, what is the volume?

Possible Answers:

\displaystyle 240

\displaystyle 120

\displaystyle 80

\displaystyle 160

Correct answer:

\displaystyle 80

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a rectangular pyramid, the base of the pyramid is a rectangle. Find the area of the rectangle.

\displaystyle \text{Area}=\text{length}\times\text{width}

\displaystyle \text{Area}=12\times4=48

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{48\times5}{3}=\frac{240}{3}=80

 

Example Question #101 : Volume Of A Three Dimensional Figure

A rectangular pyramid has a length of \displaystyle 4m, a width of \displaystyle 8m, and a height of \displaystyle 12m. In cubic meters, find the volume of the pyramid.

Possible Answers:

\displaystyle 256

\displaystyle 128

\displaystyle 336

\displaystyle 384

Correct answer:

\displaystyle 128

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a rectangular pyramid, the base of the pyramid is a rectangle. Find the area of the rectangle.

\displaystyle \text{Area}=\text{length}\times\text{width}

\displaystyle \text{Area}=4\times8=32

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{32\times12}{3}=\frac{384}{3}=128

 

Example Question #102 : Volume Of A Three Dimensional Figure

A pyramid has a square base with a side length of \displaystyle 7m and a height of \displaystyle 12m. In cubic meters, find the volume.

Possible Answers:

\displaystyle 196

\displaystyle 556

\displaystyle 588

\displaystyle 392

Correct answer:

\displaystyle 196

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a square pyramid, the base of the pyramid is a square. Find the area of the square.

\displaystyle \text{Area}=\text{length}^2

\displaystyle \text{Area}=7^2=49

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{49\times12}{3}=\frac{588}{3}=196

 

Example Question #2 : How To Find The Volume Of A Pyramid

A pyramid with a square base that has a side length of \displaystyle 12m has a height of \displaystyle 5m. In cubic meters, find the volume.

Possible Answers:

\displaystyle 480

\displaystyle 240

\displaystyle 720

\displaystyle 960

Correct answer:

\displaystyle 240

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a square pyramid, the base of the pyramid is a square. Find the area of the square.

\displaystyle \text{Area}=\text{length}^2

\displaystyle \text{Area}=12^2=144

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{144\times4}{3}=\frac{720}{3}=240

 

Example Question #8 : How To Find The Volume Of A Pyramid

A pyramid with a square base that has a side length of \displaystyle 8m has a height of \displaystyle 15\displaystyle m. In cubic meters, what is the volume of the pyramid?

Possible Answers:

\displaystyle 320

\displaystyle 960

\displaystyle 500

\displaystyle 640

Correct answer:

\displaystyle 320

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a square pyramid, the base of the pyramid is a square. Find the area of the square.

\displaystyle \text{Area}=\text{length}^2

\displaystyle \text{Area}=8^2=64

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{64\times15}{3}=\frac{960}{3}=320

 

Example Question #3 : How To Find The Volume Of A Pyramid

A pyramid has a square base of side \displaystyle 6m and a height of \displaystyle 11m. Find the volume of the pyramid in cubic meters.

Possible Answers:

\displaystyle 132

\displaystyle 264

\displaystyle 396

\displaystyle 256

Correct answer:

\displaystyle 132

Explanation:

Use the following formula to find the volume of a pyramid.

\displaystyle \text{Volume}=\frac{\text{Area of base}\times height}{3}

Since we have a square pyramid, the base of the pyramid is a square. Find the area of the square.

\displaystyle \text{Area}=\text{length}^2

\displaystyle \text{Area}=6^2=36

Now, plug in the value for the area of the base and the height into the volume formula to find the volume of the pyramid.

\displaystyle \text{Volume}=\frac{36\times11}{3}=\frac{396}{3}=132

 

Learning Tools by Varsity Tutors