SSAT Upper Level Math : Properties of Triangles

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Length Of The Side Of A Right Triangle

A right triangle has a hypotenuse of \displaystyle 12 and one leg has a length of \displaystyle 9. What is the length of the other leg?

Possible Answers:

\displaystyle 11

\displaystyle 8

\displaystyle 7\sqrt{3}

\displaystyle 10

\displaystyle 3\sqrt{7}

Correct answer:

\displaystyle 3\sqrt{7}

Explanation:

When calculating the lengths of sides of a right triangle, we can use the Pythagorean Theorem as follows:

\displaystyle a^{2}+b^{2}=c^{2}, where \displaystyle a and \displaystyle b are legs of the triangle and \displaystyle c is the hypotenuse.

Plugging in our given values:

\displaystyle 9^{2}+b^{2}=12^{2}

Subtracting \displaystyle 9^2 from each side of the equation:

\displaystyle b^{2}=12^{2}-9^{2}

\displaystyle b^{2}=144-81

\displaystyle b^{2}=63

Taking the square root of each side of the equation:

\displaystyle b=\sqrt{63}

Simplifying the square root:

\displaystyle b=\sqrt{9\times 7}

\displaystyle b=3\sqrt{7}

Example Question #2 : How To Find The Length Of The Side Of A Right Triangle

A right triangle has two legs of length \displaystyle 6 and \displaystyle 10, respectively. What is the hypotenuse of the right triangle?

Possible Answers:

\displaystyle 12

\displaystyle 2\sqrt{17}

\displaystyle 2\sqrt{34}

\displaystyle 17\sqrt{2}

\displaystyle 34\sqrt{2}

Correct answer:

\displaystyle 2\sqrt{34}

Explanation:

When calculating the lengths of sides of a right triangle, we can use the Pythagorean Theorem as follows:

\displaystyle a^{2}+b^{2}=c^{2}, where \displaystyle a and \displaystyle b are legs of the triangle and \displaystyle c is the hypotenuse.

Plugging in our given values:

\displaystyle 6^{2}+10^{2}=c^{2}

\displaystyle 36+100=c^{2}

\displaystyle 136=c^{2}

\displaystyle \sqrt{136}=c

\displaystyle \sqrt{17\times 8}=c

\displaystyle \sqrt{17\times 4\times 2}=c

\displaystyle 2\sqrt{34}=c

Example Question #3 : How To Find The Length Of The Side Of A Right Triangle

A right triangle has a leg of length \displaystyle 7 and a hypotenuse of length \displaystyle 11. What is the length of the other leg?

Possible Answers:

\displaystyle 2\sqrt{6}

\displaystyle 6\sqrt{2}

\displaystyle 9\sqrt{6}

\displaystyle 6\sqrt{9}

\displaystyle 9

Correct answer:

\displaystyle 6\sqrt{2}

Explanation:

When calculating the lengths of sides of a right triangle, we can use the Pythagorean Theorem as follows:

\displaystyle a^{2}+b^{2}=c^{2}, where \displaystyle a and \displaystyle b are legs of the triangle and \displaystyle c is the hypotenuse.

Plugging in our given values:

\displaystyle 7^{2}+b^{2}=11^{2}

Subtracting \displaystyle 7^2 from each side of the equation:

\displaystyle b^{2}=11^{2}-7^{2}

\displaystyle b^{2}=121-49

\displaystyle b^{2}=72

\displaystyle b=\sqrt{72}

\displaystyle b=\sqrt{36\times 2}

\displaystyle b=6\sqrt{2}

Example Question #1 : How To Find The Length Of The Side Of A Right Triangle

Find the length of the missing side.

1

Possible Answers:

\displaystyle 160

\displaystyle 4\sqrt{10}

\displaystyle \sqrt{15}

\displaystyle 80

Correct answer:

\displaystyle 4\sqrt{10}

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+6^2=14^2

\displaystyle x^2+36=196

\displaystyle x^2=160

\displaystyle x=\sqrt{160}=4\sqrt{10}

Example Question #2 : How To Find The Length Of The Side Of A Right Triangle

Find the length of the missing side.

2

Possible Answers:

\displaystyle 8\sqrt2

\displaystyle 176

\displaystyle 4\sqrt{13}

\displaystyle 4\sqrt{11}

Correct answer:

\displaystyle 4\sqrt{11}

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+7^2=15^2

\displaystyle x^2+49=225

\displaystyle x^2=176

\displaystyle x=\sqrt{176}=4\sqrt{11}

Example Question #3 : How To Find The Length Of The Side Of A Right Triangle

Find the length of the missing side.

3

Possible Answers:

\displaystyle 25

\displaystyle 4

\displaystyle 8

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+12^2=13^2

\displaystyle x^2+144=169

\displaystyle x^2=25

\displaystyle x=\sqrt{25}=5

Example Question #4 : How To Find The Length Of The Side Of A Right Triangle

Find the length of the missing side.

4

Possible Answers:

\displaystyle 14

\displaystyle 100

\displaystyle 12

\displaystyle 10

Correct answer:

\displaystyle 10

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+24^2=26^2

\displaystyle x^2+576=676

\displaystyle x^2=100

\displaystyle x=\sqrt{100}=10

Example Question #5 : How To Find The Length Of The Side Of A Right Triangle

Find the length of the missing side.

5

Possible Answers:

\displaystyle 64

\displaystyle 8

\displaystyle 9

\displaystyle 5

Correct answer:

\displaystyle 8

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+6^2=10^2

\displaystyle x^2+36=100

\displaystyle x^2=64

\displaystyle x=\sqrt{64}=8

Example Question #6 : How To Find The Length Of The Side Of A Right Triangle

Find the length of the missing side.

6

Possible Answers:

\displaystyle 20

\displaystyle 10\sqrt3

\displaystyle 300

\displaystyle 10\sqrt5

Correct answer:

\displaystyle 10\sqrt3

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+10^2=20^2

\displaystyle x^2+100=400

\displaystyle x^2=300

\displaystyle x=\sqrt{300}=10\sqrt{3}

Example Question #11 : Properties Of Triangles

Find the length of the missing side.

7

Possible Answers:

\displaystyle 400

\displaystyle 20

\displaystyle 12

\displaystyle 15

Correct answer:

\displaystyle 20

Explanation:

Use the Pythagorean Theorem to find the length of the missing side.

\displaystyle x^2+15^2=25^2

\displaystyle x^2+225=625

\displaystyle x^2=400

\displaystyle x=\sqrt{400}=20

Learning Tools by Varsity Tutors