SSAT Upper Level Math : Circles

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #301 : Geometry

Circle

Give the equation of the above circle.

Possible Answers:

\(\displaystyle (x+2)^{2}+ (y+4)^{2}= 5\)

\(\displaystyle (x-2)^{2}+ (y-4)^{2}= 5\)

None of the other choices is correct.

\(\displaystyle (x+2)^{2}+ (y+4)^{2}= 25\)

\(\displaystyle (x-2)^{2}+ (y-4)^{2}= 25\)

Correct answer:

\(\displaystyle (x-2)^{2}+ (y-4)^{2}= 25\)

Explanation:

A circle with center \(\displaystyle (h, k)\) and radius \(\displaystyle r\) has equation

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

The circle has center \(\displaystyle (2,4)\) and radius 5, so substitute:

\(\displaystyle (x-2)^{2}+ (y-4)^{2}= 5^{2}\)

\(\displaystyle (x-2)^{2}+ (y-4)^{2}= 25\)

Example Question #1 : How To Find The Equation Of A Circle

A circle on the coordinate plane has a diameter whose endpoints are \(\displaystyle (-3, 7)\) and \(\displaystyle (9, 5)\). Give its equation.

Possible Answers:

\(\displaystyle (x-3)^{2}+ (y-6)^{2}=14\)

\(\displaystyle (x-3)^{2}+ (y-6)^{2}=37\)

\(\displaystyle (x+3)^{2}+ (y+6)^{2}=148\)

\(\displaystyle (x+3)^{2}+ (y+6)^{2}=37\)

\(\displaystyle (x-3)^{2}+ (y-6)^{2}=148\)

Correct answer:

\(\displaystyle (x-3)^{2}+ (y-6)^{2}=37\)

Explanation:

A circle with center \(\displaystyle (h, k)\) and radius \(\displaystyle r\) has equation

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

The midpoint of a diameter of the circle is its center, so use the midpoint formula to find this:

\(\displaystyle \left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right )\)

\(\displaystyle \left ( \frac{-3+9}{2}, \frac{7+5}{2} \right )\)

\(\displaystyle (3, 6)\)

Therefore, \(\displaystyle h = 3\) and \(\displaystyle k = 6\)

The radus is the distance between the center and one endpoint, so take advantage of the distance formula using \(\displaystyle (3, 6)\) and \(\displaystyle (9, 5)\). We will concern ourcelves with finding the square of the radius \(\displaystyle r^{2}\):

\(\displaystyle r^{2}= \left ( x_{2}-x_{1}\right )^{2} + \left ( y_{2}-y_{1}\right )^{2}\)

\(\displaystyle r^{2}= \left (9-3\right )^{2} + \left ( 5-6\right )^{2}\)

\(\displaystyle r^{2}=6^{2} + \left (-1\right )^{2}\)

\(\displaystyle r^{2}=36+ 1= 37\)

Substitute: 

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

\(\displaystyle (x-3)^{2}+ (y-6)^{2}=37\)

Example Question #3 : How To Find The Equation Of A Circle

Circle

Give the equation of the above circle.

Possible Answers:

\(\displaystyle x^{2}+4x + y ^{2}-6y+9=0\)

\(\displaystyle x^{2}-4x + y ^{2}+6y+9=0\)

\(\displaystyle x^{2}-4x + y ^{2}+6y-3=0\)

\(\displaystyle x^{2}-6x + y ^{2}+4y-3=0\)

\(\displaystyle x^{2}+6x + y ^{2}-4y-3=0\)

Correct answer:

\(\displaystyle x^{2}+6x + y ^{2}-4y-3=0\)

Explanation:

A circle with center \(\displaystyle (h, k)\) and radius \(\displaystyle r\) has equation

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

The circle has center \(\displaystyle (-3, 2)\) and radius 4, so substitute:

\(\displaystyle (x-(-3))^{2}+ (y-2)^{2}= 4^{2}\)

\(\displaystyle (x+3)^{2}+ (y-2)^{2}= 16\)

\(\displaystyle x^{2}+6x + 9+ y ^{2}-4y+4= 16\)

\(\displaystyle x^{2}+6x + 9+ y ^{2}-4y+4- 16= 16-16\)

\(\displaystyle x^{2}+6x + y ^{2}-4y-3=0\)

Example Question #3 : Circles

A circle on the coordinate plane has a diameter whose endpoints are \(\displaystyle (2, 7)\) and \(\displaystyle (-8, 3)\). Give its equation.

Possible Answers:

\(\displaystyle x^{2}+6x + y^{2}-10y-82= 0\)

\(\displaystyle x^{2}+6x + y^{2}-10y+5 = 0\)

\(\displaystyle x^{2}+6x + y^{2}-10y+63= 0\)

\(\displaystyle x^{2}-6x + y^{2}+10y-82= 0\)

\(\displaystyle x^{2}-6x + y^{2}+10y+5 = 0\)

Correct answer:

\(\displaystyle x^{2}+6x + y^{2}-10y+5 = 0\)

Explanation:

A circle with center \(\displaystyle (h, k)\) and radius \(\displaystyle r\) has equation

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

The midpoint of a diameter of the circle is its center, so use the midpoint formula to find this:

\(\displaystyle \left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right )\)

\(\displaystyle \left ( \frac{2+(-8)}{2}, \frac{7+3}{2} \right )\)

\(\displaystyle (-3, 5)\)

Therefore, \(\displaystyle h = -3\) and \(\displaystyle k = 5\).

The radus is the distance between the center and one endpoint, so take advantage of the distance formula using \(\displaystyle (-3, 5)\) and \(\displaystyle (2, 7)\). We will concern ourcelves with finding the square of the radius \(\displaystyle r^{2}\):

\(\displaystyle r^{2}= \left ( x_{2}-x_{1}\right )^{2} + \left ( y_{2}-y_{1}\right )^{2}\)

\(\displaystyle r^{2}= \left ( 2- (-3)\right )^{2} + \left ( 7-5\right )^{2}\)

\(\displaystyle r^{2}= 5^{2} +2^{2}\)

\(\displaystyle r^{2}=25+ 4 = 29\)

Substitute: 

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

\(\displaystyle (x-(-3))^{2}+ (y-5)^{2}= 29\)

\(\displaystyle (x+3)^{2}+ (y-5)^{2}= 29\)

Expand:

\(\displaystyle x^{2}+6x+9+ y^{2}-10y+25= 29\)

\(\displaystyle x^{2}+6x + y^{2}-10y+34= 29\)

\(\displaystyle x^{2}+6x + y^{2}-10y+34- 29 = 0\)

\(\displaystyle x^{2}+6x + y^{2}-10y+5 = 0\)

Example Question #2 : How To Find The Equation Of A Circle

A circle on the coordinate plane has center \(\displaystyle (4, -6)\) and circumference \(\displaystyle 20 \pi\). Give its equation.

Possible Answers:

\(\displaystyle (x+4)^{2}+ (y-6)^{2}=10\)

\(\displaystyle (x+4)^{2}+ (y-6)^{2}=400\)

\(\displaystyle (x+4)^{2}+ (y-6)^{2}=100\)

\(\displaystyle (x-4)^{2}+ (y+6)^{2}=100\)

\(\displaystyle (x-4)^{2}+ (y+6)^{2}=10\)

Correct answer:

\(\displaystyle (x-4)^{2}+ (y+6)^{2}=100\)

Explanation:

A circle with center \(\displaystyle (h, k)\) and radius \(\displaystyle r\) has equation

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

The center is \(\displaystyle (4, -6)\), so \(\displaystyle h = 4, k=-6\).

To find \(\displaystyle r\), use the circumference formula:

\(\displaystyle 2 \pi r = C\)

\(\displaystyle 2 \pi r = 20 \pi\)

\(\displaystyle r = 10\)

\(\displaystyle r^{2} = 100\)

Substitute:

\(\displaystyle (x-4)^{2}+ (y-(-6))^{2}=100\)

\(\displaystyle (x-4)^{2}+ (y+6)^{2}=100\)

Example Question #303 : Geometry

A circle on the coordinate plane has center \(\displaystyle (2, 5)\) and area \(\displaystyle 36 \pi\). Give its equation.

Possible Answers:

\(\displaystyle (x-2)^{2}+ (y-5)^{2}= 36\)

\(\displaystyle (x+2)^{2}+ (y+5)^{2}= 18\)

\(\displaystyle (x-2)^{2}+ (y-5)^{2}=18\)

\(\displaystyle (x-2)^{2}+ (y-5)^{2}= 6\)

\(\displaystyle (x+2)^{2}+ (y+5)^{2}= 6\)

Correct answer:

\(\displaystyle (x-2)^{2}+ (y-5)^{2}= 36\)

Explanation:

A circle with center \(\displaystyle (h, k)\) and radius \(\displaystyle r\) has the equation

\(\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}\)

The center is \(\displaystyle (2, 5)\), so \(\displaystyle h = 2, k = 5\).

The area is \(\displaystyle 36 \pi\), so to find \(\displaystyle r^{2}\), use the area formula:

\(\displaystyle \pi r^{2}= A\)

\(\displaystyle \pi r^{2}= 36 \pi\)

\(\displaystyle r^{2}= 36\)

The equation of the line is therefore: 

\(\displaystyle (x-2)^{2}+ (y-5)^{2}= 36\)

Example Question #5 : Circles

What is the equation of a circle that has its center at \(\displaystyle (-4,5)\) and has a radius of \(\displaystyle 4\)?

Possible Answers:

\(\displaystyle (x+4)^2+(y-5)^2=16\)

\(\displaystyle (x-4)^2+(y+5)^2=16\)

\(\displaystyle (x-4)^2+(y-5)^2=16\)

\(\displaystyle (x+4)^2+(y+5)^2=16\)

Correct answer:

\(\displaystyle (x+4)^2+(y-5)^2=16\)

Explanation:

The general equation of a circle with center \(\displaystyle (a,b)\) and radius \(\displaystyle r\) is:

\(\displaystyle (x-a)^2+(y-b)^2=r^2\)

Now, plug in the values given by the question:

\(\displaystyle (x-(-4))^2+(y-5)^2=4^2\)

\(\displaystyle (x+4)^2+(y-5)^2=16\)

Example Question #4 : How To Find The Equation Of A Circle

If the center of a circle with a diameter of 5 is located at \(\displaystyle (2,-3)\), what is the equation of the circle?

Possible Answers:

\(\displaystyle (x-2)^2+(y+3)^2=25\)

\(\displaystyle (x+2)^2+(y-3)^2=5\)

\(\displaystyle (x+2)^2+(y-3)^2=6.25\)

\(\displaystyle (x-2)^2+(y+3)^2=5\)

\(\displaystyle (x-2)^2+(y+3)^2=6.25\)

Correct answer:

\(\displaystyle (x-2)^2+(y+3)^2=6.25\)

Explanation:

Write the formula for the equation of a circle with a given point, \(\displaystyle (h,k)\).

\(\displaystyle (x-h)^2+(y-k)^2=r^2\)

The radius of the circle is half the diameter, or \(\displaystyle 2.5\).

Substitute all the values into the formula and simplify.

\(\displaystyle (x-2)^2+(y-(-3))^2=(2.5)^2\)

\(\displaystyle (x-2)^2+(y+3)^2=6.25\)

Example Question #3 : Circles

Give the circumference of the circle on the coordinate plane whose equation is

\(\displaystyle x^{2}+ y^{2}+ 4x- 6y + 2 = 0\)

Possible Answers:

\(\displaystyle 2 \pi \sqrt{11}\)

\(\displaystyle 22 \pi\)

\(\displaystyle 2 \pi \sqrt{2}\)

\(\displaystyle 2 \pi\)

\(\displaystyle \pi \sqrt{13}\)

Correct answer:

\(\displaystyle 2 \pi \sqrt{11}\)

Explanation:

The standard form of the equation of a circle is 

\(\displaystyle (x-h)^{2}+(y-k)^{2} = r^{2}\)

where \(\displaystyle r\) is the radius of the circle.

We can rewrite the equation we are given, which is in general form, in this standard form as follows:

\(\displaystyle x^{2}+ y^{2}+ 4x- 6y + 2 = 0\)

\(\displaystyle x^{2}+ y^{2}+ 4x- 6y = -2\)

\(\displaystyle \left (x^{2}+ 4x \right )+\left ( y^{2}- 6y \right )= -2\)

Complete the squares. Since \(\displaystyle \left ( \frac{4}{2} \right )^{2} = 4\) and \(\displaystyle \left ( \frac{-6}{2} \right )^{2} = 9\), we do this as follows:

\(\displaystyle \left (x^{2}+ 4x +4 \right )+\left ( y^{2}- 6y +9\right )= -2+4+9\)

\(\displaystyle (x+2)^{2}+(y-3)^{2} = 11\)

\(\displaystyle r^{2} = 11\), so \(\displaystyle r = \sqrt{11}\), and the circumference of the circle is 

\(\displaystyle C = 2 \pi r = 2 \pi \sqrt{11}\)

Example Question #10 : How To Find The Equation Of A Circle

A square on the coordinate plane has as its vertices the points \(\displaystyle (0,0), (0, 6), (6,0),(6,6)\). Give the equation of a circle circumscribed about the square.

Possible Answers:

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 36\)

\(\displaystyle (x-6)^{2}+(y-6)^{2} = 18\)

\(\displaystyle (x-6)^{2}+(y-6)^{2} = 36\)

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 18\)

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 9\)

Correct answer:

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 18\)

Explanation:

Below is the figure with the circle and square in question:

Circle on axes

The center of the inscribed circle coincides with that of the square, which is the point \(\displaystyle (3,3)\). Its diameter is the length of a diagonal of the square, which is \(\displaystyle \sqrt{2}\) times the sidelength 6 of the square - this is \(\displaystyle 6 \sqrt{2}\). Its radius is, consequently, half this, or \(\displaystyle 3 \sqrt{2}\). Therefore, in the standard form of the equation, 

\(\displaystyle (x-h)^{2}+(y-k)^{2} = r^{2}\),

substitute \(\displaystyle h = k = 3\) and \(\displaystyle r = 3 \sqrt{2}\).

\(\displaystyle (x-3)^{2}+(y-3)^{2} = \left (3 \sqrt{2} \right ) ^{2}\)

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 3^{2} \left ( \sqrt{2} \right ) ^{2}\)

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 9 \cdot 2\)

\(\displaystyle (x-3)^{2}+(y-3)^{2} = 18\)

Learning Tools by Varsity Tutors