SSAT Middle Level Math : SSAT Middle Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1991 : Ssat Middle Level Quantitative (Math)

What decimal is equivalent to \displaystyle \frac{7}{100}?

 

Possible Answers:

\displaystyle .07

\displaystyle .7

\displaystyle 7.07

\displaystyle 77.7

\displaystyle 7.7

Correct answer:

\displaystyle .07

Explanation:

\displaystyle \frac{7}{100} is seven hundredths. 

\displaystyle .07 is seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #21 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

Select the decimal that is equivalent to \displaystyle \frac{81}{100}

 

Possible Answers:

\displaystyle 8.1

\displaystyle .81

\displaystyle 81.00

\displaystyle 80.1

\displaystyle 81.01

Correct answer:

\displaystyle .81

Explanation:

\displaystyle \frac{81}{100} is eighty-one hundredths. 

\displaystyle .81 is eighty-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #22 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

Select the decimal that is equivalent to \displaystyle \frac{12}{100}

 

Possible Answers:

\displaystyle 10.2

\displaystyle .012

\displaystyle .12

\displaystyle 1.2

\displaystyle 12.12

Correct answer:

\displaystyle .12

Explanation:

\displaystyle \frac{12}{100} is twelve hundredths. 

\displaystyle .12 is twelve hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #1992 : Ssat Middle Level Quantitative (Math)

What decimal is equivalent to \displaystyle \frac{62}{100}?

Possible Answers:

\displaystyle 60.2

\displaystyle .062

\displaystyle 62.0

\displaystyle 6.2

\displaystyle .62

Correct answer:

\displaystyle .62

Explanation:

\displaystyle \frac{62}{100} is sixty-two hundredths. 

\displaystyle .62 is sixty-two hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #1993 : Ssat Middle Level Quantitative (Math)

What decimal is equivalent to \displaystyle \frac{28}{100}?

 

Possible Answers:

\displaystyle .028

\displaystyle .28

\displaystyle 2.8

\displaystyle 28.0

\displaystyle 20.8

Correct answer:

\displaystyle .28

Explanation:

\displaystyle \frac{28}{100} is twenty-eight hundredths. 

\displaystyle .28 is twenty-eight hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #1994 : Ssat Middle Level Quantitative (Math)

What decimal is equivalent to \displaystyle \frac{33}{100}?

 

Possible Answers:

\displaystyle 3.30

\displaystyle .33

\displaystyle 30.3

\displaystyle 33.0

\displaystyle 3.3

Correct answer:

\displaystyle .33

Explanation:

\displaystyle \frac{33}{100} is thirty-three hundredths. 

\displaystyle .33 is thirty-three hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #1995 : Ssat Middle Level Quantitative (Math)

What decimal is equivalent to \displaystyle \frac{41}{100}? 

Possible Answers:

\displaystyle .41

\displaystyle 44.1

\displaystyle .041

\displaystyle 4.1

\displaystyle 40.1

Correct answer:

\displaystyle .41

Explanation:

\displaystyle \frac{41}{100} is forty-one hundredths. 

\displaystyle .41 is forty-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #855 : Fractions

What is the decimal equivalent to the following fraction? 

\displaystyle \frac{21}{25}

Possible Answers:

\displaystyle 0.84

\displaystyle 0.42

\displaystyle 0.21

\displaystyle 0.63

\displaystyle 0.1

Correct answer:

\displaystyle 0.84

Explanation:

When solving for a decimal from a fraction, you have two options. You can either do long division, and divide it out. How many times does 25 go into 21? Or the second option is setting the denominator as 100.

In this case, 25 goes into 100 evenly. 

\displaystyle \frac{21}{24}\times \frac{4}{4}=\frac{84}{100}.

If the denominator is 100, then the numerator is the number after the decimal point. 

\displaystyle \frac{84}{100}=0.84.

Example Question #1995 : Ssat Middle Level Quantitative (Math)

Write 0.74 as a fraction in lowest terms.

Possible Answers:

\displaystyle \frac{74}{1,000}

\displaystyle \frac{37}{50}

\displaystyle \frac{37}{5}

\displaystyle \frac{37}{500}

\displaystyle \frac{74}{100}

Correct answer:

\displaystyle \frac{37}{50}

Explanation:

This decimal has its last nonzero digit in the hundredths place; this number is equal to "seventy-four one-hundredths". As a fraction, this is

\displaystyle \frac{74}{100}

This is not in lowest terms, since \displaystyle GCF (74,100) = 2.

Reduce:

\displaystyle \frac{74}{100} = \frac{74\div 2}{100\div 2} = \frac{37}{50}

Example Question #1 : Percentage

The sales tax rate for a particular locality is 9%. How much will be paid after tax for $154.92 worth of groceries?

Possible Answers:

\displaystyle \$ 168.86

\displaystyle \$ 169.36

\displaystyle \$ 169.06

\displaystyle \$ 167.26

\displaystyle \$ 168.16

Correct answer:

\displaystyle \$ 168.86

Explanation:

Multiply the price of the groceries before tax - $154.92 - by the decimal equivalent of 9% , which is 0.09. Round this tax to the nearest hundredth (cents), then add to the price of the groceries.

Tax: \displaystyle \$154.92 \cdot 0.09 \approx \$13.94

Price after tax: \displaystyle \$154.92 + \$13.94 =\$168.86

Learning Tools by Varsity Tutors