SSAT Middle Level Math : SSAT Middle Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #19 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Drew has \(\displaystyle \frac{1}{3}lb\) of peanuts that he wants to divide evenly into \(\displaystyle 9\) bags. How much will each bag of peanuts weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{9}lb\)

\(\displaystyle \frac{1}{18}lb\)

\(\displaystyle \frac{9}{3}lb\)

\(\displaystyle \frac{1}{27}lb\)

\(\displaystyle \frac{1}{42}lb\)

Correct answer:

\(\displaystyle \frac{1}{27}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{3}\) into \(\displaystyle 9\) equal groups, so we are dividing \(\displaystyle \frac{1}{3}\) by \(\displaystyle 9\)

To solve \(\displaystyle \frac{1}{3}\div9\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{3}\times\frac{1}{9}=\frac{1}{27}\)

1 27

Example Question #13 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Tim has \(\displaystyle \frac{1}{3}lb\) of peanuts that he wants to divide evenly into \(\displaystyle 10\) bags. How much will each bag of peanuts weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{42}lb\)

\(\displaystyle \frac{10}{3}lb\)

\(\displaystyle \frac{1}{35}lb\)

\(\displaystyle \frac{1}{10}lb\)

\(\displaystyle \frac{1}{30}lb\)

Correct answer:

\(\displaystyle \frac{1}{30}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{3}\) into \(\displaystyle 10\) equal groups, so we are dividing \(\displaystyle \frac{1}{3}\) by \(\displaystyle 10\)

To solve \(\displaystyle \frac{1}{3}\div10\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{3}\times\frac{1}{10}=\frac{1}{30}\)

1 30

Example Question #561 : Number & Operations With Fractions

Tim has \(\displaystyle \frac{1}{3}lb\) of peanuts that he wants to divide evenly into \(\displaystyle 11\) bags. How much will each bag of peanuts weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{11}lb\)

\(\displaystyle \frac{11}{3}lb\)

\(\displaystyle \frac{3}{11}lb\)

\(\displaystyle \frac{1}{33}lb\)

\(\displaystyle \frac{1}{30}lb\)

Correct answer:

\(\displaystyle \frac{1}{33}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{3}\) into \(\displaystyle 11\) equal groups, so we are dividing \(\displaystyle \frac{1}{3}\) by \(\displaystyle 11\)

To solve \(\displaystyle \frac{1}{3}\div11\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{3}\times\frac{1}{11}=\frac{1}{33}\)

1 33

Example Question #1251 : Ssat Middle Level Quantitative (Math)

Drew has \(\displaystyle \frac{1}{3}lb\) of peanuts that he wants to divide evenly into \(\displaystyle 12\) bags. How much will each bag of peanuts weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{3}{12}lb\)

\(\displaystyle \frac{1}{48}lb\)

\(\displaystyle \frac{1}{12}lb\)

\(\displaystyle \frac{1}{36}lb\)

\(\displaystyle \frac{12}{3}lb\)

Correct answer:

\(\displaystyle \frac{1}{36}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{3}\) into \(\displaystyle 12\) equal groups, so we are dividing \(\displaystyle \frac{1}{3}\) by \(\displaystyle 12\)

To solve \(\displaystyle \frac{1}{3}\div12\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{3}\times\frac{1}{12}=\frac{1}{36}\)

1 36

Example Question #1252 : Ssat Middle Level Quantitative (Math)

Tim has \(\displaystyle \frac{1}{3}lb\) of peanuts that he wants to divide evenly into \(\displaystyle 13\) bags. How much will each bag of peanuts weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{13}{3}lb\)

\(\displaystyle \frac{1}{40}lb\)

\(\displaystyle \frac{1}{39}lb\)

\(\displaystyle \frac{1}{29}lb\)

\(\displaystyle \frac{1}{13}lb\)

Correct answer:

\(\displaystyle \frac{1}{39}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{3}\) into \(\displaystyle 13\) equal groups, so we are dividing \(\displaystyle \frac{1}{3}\) by \(\displaystyle 13\)

To solve \(\displaystyle \frac{1}{3}\div13\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{3}\times\frac{1}{13}=\frac{1}{39}\)

1 39

Example Question #2 : Interpret Division Of A Whole Number By A Unit Fraction: Ccss.Math.Content.5.Nf.B.7b

Megan has \(\displaystyle 13\) gallons of milk. Each glass holds \(\displaystyle \frac{1}{4}\) of a gallon. How many glasses can she fill? 

 

Possible Answers:

\(\displaystyle 56\)

\(\displaystyle 44\)

\(\displaystyle 52\)

\(\displaystyle 40\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle 52\)

Explanation:

Think: How many \(\displaystyle \frac{1}{4}\)s are in \(\displaystyle 13\) wholes? 

To solve \(\displaystyle 13\div\frac{1}{4}\) we multiply by the reciprocal

\(\displaystyle \frac{13}{1}\times\frac{4}{1}=\frac{52}{1}=52\)

52

 

Example Question #2 : Interpret Division Of A Whole Number By A Unit Fraction: Ccss.Math.Content.5.Nf.B.7b

Kalea has \(\displaystyle 12\) gallons of milk. Each glass holds \(\displaystyle \frac{1}{4}\) of a gallon. How many glasses can she fill? 

 

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle 40\)

\(\displaystyle 56\)

\(\displaystyle 44\)

\(\displaystyle 52\)

Correct answer:

\(\displaystyle 48\)

Explanation:

Think: How many \(\displaystyle \frac{1}{4}\)s are in \(\displaystyle 12\) wholes? 

To solve \(\displaystyle 12\div\frac{1}{4}\) we multiply by the reciprocal

\(\displaystyle \frac{12}{1}\times\frac{4}{1}=\frac{48}{1}=48\)

48

Example Question #4 : Interpret Division Of A Whole Number By A Unit Fraction: Ccss.Math.Content.5.Nf.B.7b

Laura has \(\displaystyle 11\) gallons of milk. Each glass holds \(\displaystyle \frac{1}{4}\) of a gallon. How many glasses can she fill? 

 

Possible Answers:

\(\displaystyle 40\)

\(\displaystyle 56\)

\(\displaystyle 44\)

\(\displaystyle 52\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle 44\)

Explanation:

Think: How many \(\displaystyle \frac{1}{4}\)s are in \(\displaystyle 11\) wholes? 

To solve \(\displaystyle 11\div\frac{1}{4}\) we multiply by the reciprocal

\(\displaystyle \frac{11}{1}\times\frac{4}{1}=\frac{44}{1}=44\)

44

Example Question #1251 : Ssat Middle Level Quantitative (Math)

Kara has \(\displaystyle 10\) gallons of milk. Each glass holds \(\displaystyle \frac{1}{4}\) of a gallon. How many glasses can she fill? 

 

Possible Answers:

\(\displaystyle 44\)

\(\displaystyle 52\)

\(\displaystyle 56\)

\(\displaystyle 40\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle 40\)

Explanation:

Think: How many \(\displaystyle \frac{1}{4}\)s are in \(\displaystyle 10\) wholes? 

To solve \(\displaystyle 10\div\frac{1}{4}\) we multiply by the reciprocal

\(\displaystyle \frac{10}{1}\times\frac{4}{1}=\frac{40}{1}=40\)

40

Example Question #5 : Interpret Division Of A Whole Number By A Unit Fraction: Ccss.Math.Content.5.Nf.B.7b

Katie has \(\displaystyle 9\) gallons of milk. Each glass holds \(\displaystyle \frac{1}{4}\) of a gallon. How many glasses can she fill? 

 

Possible Answers:

\(\displaystyle 24\)

\(\displaystyle 20\)

\(\displaystyle 36\)

\(\displaystyle 32\)

\(\displaystyle 28\)

Correct answer:

\(\displaystyle 36\)

Explanation:

Think: How many \(\displaystyle \frac{1}{4}\)s are in \(\displaystyle 9\) wholes? 

To solve \(\displaystyle 9\div\frac{1}{4}\) we multiply by the reciprocal

\(\displaystyle \frac{9}{1}\times\frac{4}{1}=\frac{36}{1}=36\)

36

Learning Tools by Varsity Tutors