SSAT Middle Level Math : Fractions

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #343 : Fractions

\(\displaystyle 13\frac{3}{9}+6\frac{4}{9}\)

 

Possible Answers:

\(\displaystyle 17\frac{6}{}9\)

\(\displaystyle 18\frac{6}{}9\)

\(\displaystyle 18\frac{7}{}9\)

\(\displaystyle 17\frac{7}{}9\)

\(\displaystyle 19\frac{7}{}9\)

Correct answer:

\(\displaystyle 19\frac{7}{}9\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 13+6=19\)

\(\displaystyle \frac{3}{9}+\frac{4}{9}=\frac{7}{9}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #161 : How To Add Fractions

\(\displaystyle 12\frac{3}{9}+17\frac{2}{9}\)

 

Possible Answers:

\(\displaystyle 27\frac{6}{9}\)

\(\displaystyle 29\frac{5}{9}\)

\(\displaystyle 27\frac{5}{9}\)

\(\displaystyle 29\frac{4}{9}\)

\(\displaystyle 29\frac{6}{9}\)

Correct answer:

\(\displaystyle 29\frac{5}{9}\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 12+17=29\)

\(\displaystyle \frac{3}{9}+\frac{2}{9}=\frac{5}{9}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #344 : Fractions

\(\displaystyle 17\frac{4}{11}+9\frac{4}{11}\)

 

Possible Answers:

\(\displaystyle 26\frac{8}{11}\)

\(\displaystyle 26\frac{9}{11}\)

\(\displaystyle 27\frac{8}{11}\)

\(\displaystyle 27\frac{9}{11}\)

\(\displaystyle 25\frac{9}{11}\)

Correct answer:

\(\displaystyle 26\frac{8}{11}\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 17+9=26\)

\(\displaystyle \frac{4}{11}+\frac{4}{11}=\frac{8}{11}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #501 : Number & Operations: €”Fractions

\(\displaystyle 22\frac{3}{11}+13\frac{6}{11}\)

 

Possible Answers:

\(\displaystyle 33\frac{8}{11}\)

\(\displaystyle 33\frac{9}{11}\)

\(\displaystyle 35\frac{8}{11}\)

\(\displaystyle 34\frac{9}{11}\)

\(\displaystyle 35\frac{9}{11}\)

Correct answer:

\(\displaystyle 35\frac{9}{11}\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 22+13=35\)

\(\displaystyle \frac{3}{11}+\frac{6}{11}=\frac{9}{11}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #502 : Number & Operations: €”Fractions

\(\displaystyle 13\frac{5}{13}+5\frac{2}{13}\)

 

Possible Answers:

\(\displaystyle 17\frac{7}{13}\)

\(\displaystyle 19\frac{8}{13}\)

\(\displaystyle 18\frac{7}{13}\)

\(\displaystyle 18\frac{8}{13}\)

\(\displaystyle 19\frac{7}{13}\)

Correct answer:

\(\displaystyle 18\frac{7}{13}\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 13+5=18\)

\(\displaystyle \frac{5}{13}+\frac{2}{13}=\frac{7}{13}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #503 : Number & Operations: €”Fractions

\(\displaystyle 38\frac{6}{12}+12\frac{1}{12}\)

 

Possible Answers:

\(\displaystyle 50\frac{7}{12}\)

\(\displaystyle 50\frac{9}{12}\)

\(\displaystyle 52\frac{7}{12}\)

\(\displaystyle 50\frac{8}{12}\)

\(\displaystyle 52\frac{8}{12}\)

Correct answer:

\(\displaystyle 50\frac{7}{12}\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 38+12=50\)

\(\displaystyle \frac{6}{12}+\frac{1}{12}=\frac{7}{12}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #511 : Number & Operations: €”Fractions

\(\displaystyle 13\frac{1}{5}+14\frac{2}{5}\)

 

Possible Answers:

\(\displaystyle 28\frac{3}{5}\)

\(\displaystyle 27\frac{3}{5}\)

\(\displaystyle 29\frac{1}{5}\)

\(\displaystyle 29\frac{2}{5}\)

\(\displaystyle 26\frac{3}{5}\)

Correct answer:

\(\displaystyle 27\frac{3}{5}\)

Explanation:

When we add mixed numbers, we add whole numbers to whole numbers and fractions to fractions. 

\(\displaystyle 13+14=27\)

\(\displaystyle \frac{1}{5}+\frac{2}{5}=\frac{3}{5}\)

Remember, when we are adding fractions we must have common denominators and we only add the numerators. 

Example Question #1241 : Common Core Math: Grade 4

Select the fraction model that shows the sum of \(\displaystyle \frac{1}{8}+\frac{1}{8}\)

 

Possible Answers:

4 8

2 6

3 8

5 8

2 8

Correct answer:

2 8

Explanation:

\(\displaystyle \frac{1}{8}+\frac{1}{8}=\frac{2}{8}\)

The fraction model is broken up into eight pieces and two of the pieces are shaded in. The numerator of the fraction tells us how many pieces should be shaded in, and the denominator tells us how many pieces the whole should be split up into. 

Example Question #2 : Adding Fractions In Word Problems

In Stuart's pantry, \(\displaystyle \frac{1}{5}\) of the items are chips and \(\displaystyle \frac{1}{5}\) of the items are cereal. What fraction of the items are chips or cereal?  

Possible Answers:

\(\displaystyle \frac{1}{5}\)

\(\displaystyle \frac{2}{5}\)

\(\displaystyle \frac{5}{5}\)

\(\displaystyle \frac{4}{5}\)

\(\displaystyle \frac{3}{5}\)

Correct answer:

\(\displaystyle \frac{2}{5}\)

Explanation:

To solve this problem, we are putting the chips and the cereal together, so we add the fractions. 

\(\displaystyle \frac{1}{5}+\frac{1}{5}=\frac{2}{5}\)

2 5

Example Question #1 : Adding Fractions In Word Problems

In Andy's pantry, \(\displaystyle \frac{3}{5}\) of the items are chips and \(\displaystyle \frac{1}{5}\) of the items are cereal. What fraction of the items are chips or cereal?  

 

Possible Answers:

\(\displaystyle \frac{4}{5}\)

\(\displaystyle \frac{2}{5}\)

\(\displaystyle \frac{1}{5}\)

\(\displaystyle \frac{5}{5}\)

\(\displaystyle \frac{3}{5}\)

Correct answer:

\(\displaystyle \frac{4}{5}\)

Explanation:

To solve this problem, we are putting the chips and the cereal together, so we add the fractions. 

\(\displaystyle \frac{3}{5}+\frac{1}{5}=\frac{4}{5}\)

4 5

Learning Tools by Varsity Tutors