SSAT Middle Level Math : How to divide fractions

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Divide Fractions And Whole Numbers: Ccss.Math.Content.5.Nf.B.7

\displaystyle \small \frac{2}{9}\div\frac{1}{2}

Possible Answers:

\displaystyle \small \frac{1}{3}

\displaystyle \small \frac{18}{2}

\displaystyle \small \frac{4}{9}

\displaystyle \small \frac{2}{18}

\displaystyle \small \frac{9}{4}

Correct answer:

\displaystyle \small \frac{4}{9}

Explanation:

\displaystyle \small \frac{2}{9}\div\frac{1}{2}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{2}{9}\times\frac{2}{1}=\frac{4}{9}

Example Question #4 : Divide Fractions And Whole Numbers: Ccss.Math.Content.5.Nf.B.7

\displaystyle \small \frac{3}{4}\div\frac{1}{5}

Possible Answers:

\displaystyle \small \frac{17}{7}

\displaystyle \small \frac{4}{15}

\displaystyle \small \frac{15}{4}

\displaystyle \small \frac{20}{3}

\displaystyle \small \frac{3}{20}

Correct answer:

\displaystyle \small \frac{15}{4}

Explanation:

\displaystyle \small \frac{3}{4}\div\frac{1}{5}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{3}{4}\times\frac{5}{1}=\frac{15}{4}

Example Question #31 : How To Divide Fractions

\displaystyle \small \frac{3}{14}\div\frac{1}{3}

Possible Answers:

\displaystyle \small \frac{11}{9}

\displaystyle \small \frac{42}{3}

\displaystyle \small \frac{9}{14}

\displaystyle \small \frac{3}{42}

\displaystyle \small \frac{9}{11}

Correct answer:

\displaystyle \small \frac{9}{14}

Explanation:

\displaystyle \small \frac{3}{14}\div\frac{1}{3}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{3}{14}\times\frac{3}{1}=\frac{9}{14}

Example Question #531 : Number & Operations With Fractions

\displaystyle \small \frac{5}{6}\div\frac{1}{3}

Possible Answers:

\displaystyle \small \frac{5}{18}

\displaystyle \small \frac{18}{5}

\displaystyle \small \frac{7}{2}

\displaystyle \small \frac{6}{15}

\displaystyle \small \frac{15}{6}

Correct answer:

\displaystyle \small \frac{15}{6}

Explanation:

\displaystyle \small \frac{5}{6}\div\frac{1}{3}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{5}{6}\times\frac{3}{1}=\frac{15}{6}

Example Question #6 : Divide Fractions And Whole Numbers: Ccss.Math.Content.5.Nf.B.7

\displaystyle \small \frac{4}{11}\div\frac{3}{1}

Possible Answers:

\displaystyle \small \frac{5}{12}

\displaystyle \small \frac{12}{11}

\displaystyle \small \frac{5}{8}

\displaystyle \small \frac{4}{33}

\displaystyle \small \frac{9}{14}

Correct answer:

\displaystyle \small \frac{4}{33}

Explanation:

\displaystyle \small \frac{4}{11}\div\frac{3}{1}

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \small \frac{4}{11}\times\frac{1}{3}=\frac{4}{33}

Example Question #532 : Number & Operations With Fractions

\displaystyle \small \frac{2}{7}\div3

Possible Answers:

\displaystyle \small \frac{6}{7}

\displaystyle \small \frac{1}{12}

\displaystyle \small \frac{2}{21}

\displaystyle \small \frac{1}{9}

\displaystyle \small \frac{7}{8}

Correct answer:

\displaystyle \small \frac{2}{21}

Explanation:

\displaystyle \small \frac{2}{7}\div3

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \small \frac{2}{7}\times\frac{1}{3}=\frac{2}{21}

Example Question #1381 : Common Core Math: Grade 5

\displaystyle \small \frac{3}{4}\div6

Possible Answers:

\displaystyle \small \frac{3}{5}

\displaystyle \small \frac{3}{4}

\displaystyle \small \frac{2}{9}

\displaystyle \small \frac{1}{3}

\displaystyle \small \frac{1}{8}

Correct answer:

\displaystyle \small \frac{1}{8}

Explanation:

\displaystyle \small \frac{3}{4}\div6

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{3}{4}\times\frac{1}{6}=\frac{3}{24}

\displaystyle \small \frac{3}{24} can be reduced by dividing both sides by \displaystyle \small 3.

\displaystyle \small \frac{3}{24}\div \frac{3}{3}=\frac{1}{8}

Example Question #533 : Number & Operations With Fractions

\displaystyle \small \frac{1}{7}\div3

Possible Answers:

\displaystyle \small \frac{1}{8}

\displaystyle \small \frac{3}{7}

\displaystyle \small \frac{1}{21}

\displaystyle \small \frac{9}{11}

\displaystyle \small \frac{7}{13}

Correct answer:

\displaystyle \small \frac{1}{21}

Explanation:

\displaystyle \small \frac{1}{7}\div3

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{1}{7}\times\frac{1}{3}=\frac{1}{21}

Example Question #1383 : Common Core Math: Grade 5

\displaystyle \small \small \frac{5}{9}\div4

Possible Answers:

\displaystyle \small \frac{7}{9}

\displaystyle \small \frac{6}{36}

\displaystyle \small \frac{9}{27}

\displaystyle \small \frac{5}{36}

\displaystyle \small \frac{1}{6}

Correct answer:

\displaystyle \small \frac{5}{36}

Explanation:

\displaystyle \small \small \frac{5}{9}\div4

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{5}{9}\times\frac{1}{4}=\frac{5}{36}

Example Question #1384 : Common Core Math: Grade 5

\displaystyle \small \frac{1}{8}\div2

Possible Answers:

\displaystyle \small \frac{7}{17}

\displaystyle \small \frac{1}{16}

\displaystyle \small \frac{1}{8}

\displaystyle \small \frac{3}{16}

\displaystyle \small \frac{3}{14}

Correct answer:

\displaystyle \small \frac{1}{16}

Explanation:

\displaystyle \small \frac{1}{8}\div2

To divide fractions, we multiply by the reciprocal. In order to find the reciprocal, we simply flip the fraction over. The numerator becomes the denominator and the denominator becomes the numerator. 

\displaystyle \small \frac{1}{8}\times\frac{1}{2}=\frac{1}{16}

Learning Tools by Varsity Tutors