SSAT Elementary Level Math : Operations

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 9{\overline{\smash{)}99}} by making a rectangular array. 

Possible Answers:

\displaystyle 15

\displaystyle 12

\displaystyle 13

\displaystyle 11

\displaystyle 14

Correct answer:

\displaystyle 11

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 99 squares, and one dimension of the rectangular array is going to have \displaystyle 9 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 9 squares and keep adding \displaystyle 9 on top of the previous \displaystyle 9 until we've used all \displaystyle 99 squares. Our rectangular array is \displaystyle 11 squares high. 

\displaystyle 99\div9=11

99 9

Example Question #12 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 9{\overline{\smash{)}117}} by making a rectangular array. 

Possible Answers:

\displaystyle 11

\displaystyle 15

\displaystyle 12

\displaystyle 13

\displaystyle 14

Correct answer:

\displaystyle 13

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 117 squares, and one dimension of the rectangular array is going to have \displaystyle 9 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 9 squares and keep adding \displaystyle 9 on top of the previous \displaystyle 9 until we've used all \displaystyle 117 squares. Our rectangular array is \displaystyle 13 squares high. 

\displaystyle 117\div9=13

117 9

Example Question #13 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 3{\overline{\smash{)}29}} by making a rectangular array. 

 

Possible Answers:

\displaystyle 8

\displaystyle 9

\displaystyle 8\ R2

\displaystyle 9\ R4

\displaystyle 9\ R2

Correct answer:

\displaystyle 9\ R2

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 29 squares, and one dimension of the rectangular array is going to have \displaystyle 3 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 3 squares and keep adding \displaystyle 3 on top of the previous \displaystyle 3 until we've used all \displaystyle 29 squares. Our rectangular array is \displaystyle 9 squares high with \displaystyle 2 squares left over, which is our remainder.

\displaystyle 29\div3=9\ R2

3

Example Question #14 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 3{\overline{\smash{)}19}} by making a rectangular array. 

Possible Answers:

\displaystyle 6

\displaystyle 6\ R1

\displaystyle 7\ R1

\displaystyle 7

\displaystyle 7\ R2

Correct answer:

\displaystyle 6\ R1

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 19 squares, and one dimension of the rectangular array is going to have \displaystyle 3 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 3 squares and keep adding \displaystyle 3 on top of the previous \displaystyle 3 until we've used all \displaystyle 19 squares. Our rectangular array is \displaystyle 6 squares high with \displaystyle 1 square left over, which is our remainder. 

\displaystyle 19\div3=6\ R1

3

Example Question #15 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 4{\overline{\smash{)}50}} by making a rectangular array. 

Possible Answers:

\displaystyle 13\ R3

\displaystyle 13\ R2

\displaystyle 13

\displaystyle 12\ R2

\displaystyle 12\ R3

Correct answer:

\displaystyle 12\ R2

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 50 squares, and one dimension of the rectangular array is going to have \displaystyle 4 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 4 squares and keep adding \displaystyle 4 on top of the previous \displaystyle 4 until we've used all \displaystyle 50 squares. Our rectangular array is \displaystyle 12 squares high with \displaystyle 2 sqaures left over, which is our remainder. 

\displaystyle 50\div4=12\ R2

4

Example Question #16 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 4{\overline{\smash{)}63}} by making a rectangular array. 

Possible Answers:

\displaystyle 15\ R2

\displaystyle 14\ R3

\displaystyle 15\ R3

\displaystyle 15\ R1

\displaystyle 14\ R2

Correct answer:

\displaystyle 15\ R3

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 63 squares, and one dimension of the rectangular array is going to have \displaystyle 4 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 4 squares and keep adding \displaystyle 4 on top of the previous \displaystyle 4 until we've used all \displaystyle 63 squares. Our rectangular array is \displaystyle 15 squares high with \displaystyle 3 squares left over, which is our remainder. 

\displaystyle 63\div4=15\ R3

 4

Example Question #11 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 5{\overline{\smash{)}73}} by making a rectangular array. 

Possible Answers:

\displaystyle 14\ R2

\displaystyle 13\ R4

\displaystyle 13\ R2

\displaystyle 14\ R3

\displaystyle 14\ R4

Correct answer:

\displaystyle 14\ R3

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 73 squares, and one dimension of the rectangular array is going to have \displaystyle 5 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 5 squares and keep adding \displaystyle 5 on top of the previous \displaystyle 5 until we've used all \displaystyle 73 squares. Our rectangular array is \displaystyle 14 squares high with \displaystyle 3 squares left over, which is our remainder. 

\displaystyle 73\div5=14\ R3

5

Example Question #18 : Divide Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.6

Solve \displaystyle 6{\overline{\smash{)}89}} by making a rectangular array.

Possible Answers:

\displaystyle 16\ R4

\displaystyle 13\ R6

\displaystyle 15\ R3

\displaystyle 15\ R4

\displaystyle 14\ R5

Correct answer:

\displaystyle 14\ R5

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 89 squares, and one dimension of the rectangular array is going to have \displaystyle 6 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 6 squares and keep adding \displaystyle 6 on top of the previous \displaystyle 6 until we've used all \displaystyle 89 squares. Our rectangular array is \displaystyle 14 squares high with \displaystyle 5 quares left over, which is our remainder. 

\displaystyle 89\div6=14 R\5

6

Example Question #3581 : Operations

Solve \displaystyle 6{\overline{\smash{)}45}} by making a rectangular array. 

Possible Answers:

\displaystyle 6\ R3

\displaystyle 7\ R3

\displaystyle 6\ R2

\displaystyle 7\ R4

\displaystyle 7\ R2

Correct answer:

\displaystyle 7\ R3

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 45 squares, and one dimension of the rectangular array is going to have \displaystyle 6 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 6 squares and keep adding \displaystyle 6 on top of the previous \displaystyle 6 until we've used all \displaystyle 45 squares. Our rectangular array is \displaystyle 7 squares high with \displaystyle 3 squares left over, which is our remainder. 

\displaystyle 45\div6=7\ R3

6

Example Question #32 : Use Place Value Understanding And Properties Of Operations To Perform Multi Digit Arithmetic

Solve \displaystyle 6{\overline{\smash{)}91}} by making a rectangular array. 

Possible Answers:

\displaystyle 14\ R1

\displaystyle 15\ R1

\displaystyle 15\ R2

\displaystyle 13\ R1

\displaystyle 14\ R2

Correct answer:

\displaystyle 15\ R1

Explanation:

Using our problem to make a rectangular array, we know that we are going to use a total of \displaystyle 91 squares, and one dimension of the rectangular array is going to have \displaystyle 6 squares, we'll make that the width. Our answer will be how many squares high the rectangle array is, or the height. 

We can start with \displaystyle 6 squares and keep adding \displaystyle 6 on top of the previous \displaystyle 6 until we've used all \displaystyle 91 squares. Our rectangular array is \displaystyle 15 squares high with \displaystyle 1 square left over, which is our remainder. 

\displaystyle 91\div6=15\ R1

6

Learning Tools by Varsity Tutors