All SAT Math Resources
Example Questions
Example Question #2 : How To Find The Surface Area Of A Sphere
A sphere is perfectly contained within a cube that has a surface area of 726 square units. In square units, what is the surface area of the sphere?
484π
None of the other answers
30.25π
11π
121π
121π
To begin, we must determine the dimensions of the cube. To do this, recall that the surface area of a cube is made up of six squares and is thus defined as: A = 6s2, where s is one of the sides of the cube. For our data, this gives us:
726 = 6s2; 121 = s2; s = 11
Now, if the sphere is contained within the cube, that means that 11 represents the diameter of the sphere. Therefore, the radius of the sphere is 5.5 units. The surface area of a sphere is defined as: A = 4πr2. For our data, that would be:
A = 4π * 5.52 = 30.25 * 4 * π = 121π
Example Question #3 : How To Find The Surface Area Of A Sphere
The area of a circle with radius 4 divided by the surface area of a sphere with radius 2 is equal to:
3
2
0.5
π
1
1
The surface area of a sphere is 4πr2. The area of a circle is πr2. 16/16 is equal to 1.
Example Question #13 : Spheres
What is the ratio of the surface area of a cube to the surface area of a sphere inscribed within it?
6/π
2π
π/3
3/π
4/π
6/π
Let's call the radius of the sphere r. The formula for the surface area of a sphere (A) is given below:
A = 4πr2
Because the sphere is inscribed inside the cube, the diameter of the sphere is equal to the side length of the cube. Because the diameter is twice the length of the radius, the diameter of the sphere is 2r. This means that the side length of the cube is also 2r.
The surface area for a cube is given by the following formula, where s represents the length of each side of the cube:
surface area of cube = 6s2
The formula for surface area of a cube comes from the fact that each face of the cube has an area of s2, and there are 6 faces total on a cube.
Since we already determined that the side length of the cube is the same as 2r, we can replace s with 2r.
surface area of cube = 6(2r)2 = 6(2r)(2r) = 24r2.
We are asked to find the ratio of the surface area of the cube to the surface area of the sphere. This means we must divide the surface area of the cube by the surface area of the sphere.
ratio = (24r2)/(4πr2)
The r2 term cancels in the numerator and denominator. Also, 24/4 simplifes to 6.
ratio = (24r2)/(4πr2) = 6/π
The answer is 6/π.
Example Question #1 : How To Find The Surface Area Of A Sphere
What is the surface area of a hemisphere with a diameter of ?
A hemisphere is half of a sphere. The surface area is broken into two parts: the spherical part and the circular base.
The surface area of a sphere is given by .
So the surface area of the spherical part of a hemisphere is .
The area of the circular base is given by . The radius to use is half the diameter, or 2 cm.
Example Question #9 : How To Find The Surface Area Of A Sphere
Six spheres have surface areas that form an arithmetic sequence. The two smallest spheres have radii 4 and 6. Give the surface area of the largest sphere.
The surface area of a sphere with radius can be determined using the formula
.
The smallest sphere, with radius , has surface area
The second-smallest sphere, with radius , has surface area
The surface areas are in an arithmetic sequence; their common difference is the difference of these two surface areas, or
Since the six surface areas are in an arithmetic sequence, the surface area of the largest of the six spheres - that is, the sixth-smallest sphere - is
Example Question #2 : How To Find The Surface Area Of A Sphere
The radii of six spheres form an arithmetic sequence. The smallest and largest spheres have radii 10 and 30, respectively. Give the surface area of the second-smallest sphere.
None of the other responses gives a correct answer.
The radii of the spheres form an arithmetic sequence, with
and
The common difference can be computed as follows:
The second-smallest sphere has radius
The surface area of a sphere with radius can be determined using the formula
.
Setting , we get
.
Example Question #791 : Sat Mathematics
Find the surface area of a sphere with radius 1.
To solve, use the formula for the surface are a of a sphere.
Substitute in the radius of one into the following equation.
Thus,
Example Question #16 : Spheres
Find the surface area of a sphere whose radius is 5.
To solve, simply use the formula for the surface area of a sphere. Thus,
Example Question #792 : Sat Mathematics
Find the surface area of a sphere with radius 4.
To solve, simply use the formula for the surface area of a sphere. Thus,
The surface area for a sphere is one of those formulas you are going to have to memorize. There isn't exactly an easy wasy to derive it. My only trick for differentiating it from other circular formulas is the fact that area is two-dimensional, so you only square the r, not cube it.
Example Question #795 : Geometry
The surface area of a given sphere is . What is the radius of the sphere?
The surface area of a given sphere is represented by the equation
Substituting in our given surface area, we can simplify this equation and solve for r.
Certified Tutor