All SAT Math Resources
Example Questions
Example Question #2741 : Sat Mathematics
If , then find
is the same as .
To find the inverse simply exchange and and solve for .
So we get which leads to .
Example Question #2742 : Sat Mathematics
If , then which of the following is equal to ?
Example Question #2743 : Sat Mathematics
Given the relation below, identify the domain of the inverse of the relation.
The inverse of the relation does not exist.
The domain of the inverse of a relation is the same as the range of the original relation. In other words, the y-values of the relation are the x-values of the inverse.
For the original relation, the range is: .
Thus, the domain for the inverse relation will also be .
Example Question #5 : How To Find Domain And Range Of The Inverse Of A Relation
Define , restricting the domain of the function to .
Determine (you need not determine its domain restriction).
does not exist
First, we must determine whether exists.
A quadratic function has a parabola as its graph; this graph decreases, then increases (or vice versa), with a vertex at which the change takes place.
exists if and only if, if , then - or, equivalently, if there does not exist and such that , but . This will happen on any interval on which the graph of constantly increases or constantly decreases, but if the graph changes direction on an interval, there will be such that on this interval. The key is therefore to determine whether the interval to which the domain is restricted contains the vertex.
The -coordinate of the vertex of the parabola of the function
is .
The -coordinate of the vertex of the parabola of can be found by setting :
.
The vertex of the graph of without its domain restriction is at the point with -coordinate 2. However, . Therefore, the domain at which is restricted does not include the vertex, and exists on this domain.
To determine the inverse of , first, rewrite in vertex form
, the same as in the standard form.
The graph of , if unrestricted, would have a vertex with -coordinate 2, and -coordinate
.
Therefore, .
The vertex form of is therefore
To find , first replace with :
Switch and :
Solve for . First, add 8 to both sides:
Take the square root of both sides:
Add 2 to both sides
Replace with :
Either or
The domain of is the set of nonpositive numbers; this is consequently the range of . can only have positive values, so the only possible choice for is .
Example Question #5 : How To Find Domain And Range Of The Inverse Of A Relation
Define a function .
It is desired that is domain be restricted so that have an inverse. Which of these domain restrictions would not achieve that goal?
A quadratic function has a parabola as its graph; this graph decreases, then increases (or vice versa), with a vertex at which the change takes place.
exists if and only if, if , then - or, equivalently, if there does not exist and such that , but . This will happen on any interval on which the graph of constantly increases or constantly decreases, but if the graph changes direction on an interval, there will be such that on this interval. The key is therefore to identify the interval that contains the vertex.
The -coordinate of the vertex of the parabola of the function
is .
The -coordinate of the vertex of the parabola of can be found by setting :
.
Of the five intervals in the choices,
,
so cannot exist if is restricted to this interval. This is the correct choice.
Example Question #41 : Algebraic Functions
Define , restricting the domain of the function to .
Determine (you need not determine its domain restriction).
does not exist
does not exist
First, we must determine whether exists.
A quadratic function has a parabola as its graph; this graph changes direction (downward to upward, or vice versa) at a given point called the vertex.
exists on a given domain interval if and only if there does not exist and on this domain such that , but . This will happen if the graph changes direction on the domain interval. The key is therefore to determine whether the given domain interval includes the vertex.
The -coordinate of the vertex of the parabola of the function
is .
The -coordinate of the vertex of the parabola of can be found by setting :
.
The vertex of the graph of without its domain restriction is at the point with -coordinate 8. Since , the vertex is in the interior of the domain; as a consequence, the graph of changes direction on the interval, and does not exist on .
Example Question #1 : How To Find F(X)
If f(x) = x2 – 5 for all values x and f(a) = 4, what is one possible value of a?
8
14
3
1
11
3
Using the defined function, f(a) will produce the same result when substituted for x:
f(a) = a2 – 5
Setting this equal to 4, you can solve for a:
a2 – 5 = 4
a2 = 9
a = –3 or 3
Example Question #2 : How To Find F(X)
If the function g is defined by g(x) = 4x + 5, then 2g(x) – 3 =
6x + 2
8x + 2
6x + 7
4x + 2
8x + 7
8x + 7
The function g(x) is equal to 4x + 5, and the notation 2g(x) asks us to multiply the entire function by 2. 2(4x + 5) = 8x + 10. We then subtract 3, the second part of the new equation, to get 8x + 7.
Example Question #3 : How To Find F(X)
If f(x) = x2 + 5x and g(x) = 2, what is f(g(4))?
39
4
2
14
36
14
First you must find what g(4) is. The definition of g(x) tells you that the function is always equal to 2, regardless of what “x” is. Plugging 2 into f(x), we get 22 + 5(2) = 14.
Example Question #3 : Algebraic Functions
f(a) = 1/3(a3 + 5a – 15)
Find a = 3.
3
9
27
1
19
9
Substitute 3 for all a.
(1/3) * (33 + 5(3) – 15)
(1/3) * (27 + 15 – 15)
(1/3) * (27) = 9