SAT Math : Exponents and the Distributive Property

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Exponents And The Distributive Property

Factor 2x2 - 5x – 12

Possible Answers:

(x - 4) (2x + 3)

(x – 4) (2x – 3)

(x + 4) (2x + 3)

(x + 4) (2x + 3)

Correct answer:

(x - 4) (2x + 3)

Explanation:

Via the FOIL method, we can attest that x(2x) + x(3) + –4(2x) + –4(3) = 2x2 – 5x – 12.

Example Question #2341 : Sat Mathematics

x > 0.

Quantity A: (x+3)(x-5)(x)

Quantity B: (x-3)(x-1)(x+3)

Possible Answers:

Quantity B is greater

The relationship cannot be determined from the information given

Quantity A is greater

The two quantities are equal

Correct answer:

Quantity B is greater

Explanation:

 

Use FOIL: 

 

  (x+3)(x-5)(x) = (x2 - 5x + 3x - 15)(x) = x3 - 5x2 + 3x2 - 15x = x3 - 2x2 - 15x for A.

 

  (x-3)(x-1)(x+3) = (x-3)(x+3)(x-1) = (x2 + 3x - 3x - 9)(x-1) = (x2 - 9)(x-1)

  (x2 - 9)(x-1) = x3 - x2 - 9x + 9 for B. 

The difference between A and B: 

 (x3 - 2x2 - 15x) - (x3 - x2 - 9x + 9) = x3 - 2x2 - 15x - x3 + x2 + 9x - 9

 = - x2 - 4x - 9. Since all of the terms are negative and x > 0:

  A - B < 0.

Rearrange A - B < 0:

  A < B

 

 

 

Example Question #2 : How To Use Foil

Solve for all real values of \displaystyle \small x.

\displaystyle x^3+5x^2-10x=2x^2

Possible Answers:

\displaystyle 2,\ 5

\displaystyle 0,\ 2,\ -5

\displaystyle 0,\ 2,\ 5

\displaystyle 2,\ -5

Correct answer:

\displaystyle 0,\ 2,\ -5

Explanation:

\displaystyle x^3+5x^2-10=2x^2

First, move all terms to one side of the equation to set them equal to zero.

\displaystyle x^3+5x^2-2x^2-10x=0

\displaystyle x^3+3x^2-10x=0

All terms contain an \displaystyle \small x, so we can factor it out of the equation.

\displaystyle x(x^2+3x-10)=0

Now, we can factor the quadratic in parenthesis. We need two numbers that add to \displaystyle \small 3 and multiply to \displaystyle \small -10.

\displaystyle -2*5=-10\ \text{and}\ -2+5=3

\displaystyle x(x-2)(x+5)=0

We now have three terms that multiply to equal zero. One of these terms must equal zero in order for the product to be zero.

\displaystyle \begin{matrix} x=0 & x-2=0 &x+5=0 \\ x=0 & x=2 & x=-5 \end{matrix}

Our answer will be \displaystyle \small x=0,2,-5.

Example Question #571 : Algebra

Find the product in terms of \displaystyle x:

\displaystyle (3x-4)(9x+13)

Possible Answers:

\displaystyle 27x^2+3x+52

\displaystyle 27x^2-52x+3

\displaystyle 27x^2-3x-52

\displaystyle 27x^2+3x-52

\displaystyle 3x^2+27x-52

Correct answer:

\displaystyle 27x^2+3x-52

Explanation:

This question can be solved using the FOIL method. So the first terms are multiplied together:

\displaystyle (3x)(9x)

This gives:

\displaystyle 27x^2

The x-squared is due to the x times x. 

The outer terms are then multipled together and added to the value above. 

\displaystyle (3x)13=39x

The inner two terms are multipled together to give the next term of the expression.

\displaystyle (-4)(9x)=-36x

Finally the last terms are multiplied together.

\displaystyle (-4)(13)=-52

All of the above terms are added together to give:

\displaystyle 27x^2+39x-36x-52

Combining like terms gives

\displaystyle 27x^2+3x-52.

Example Question #1 : How To Use Foil

Expand the following expression:

\displaystyle (9x+6)(6x^2-3)

Possible Answers:

\displaystyle 108x^3-36x^2+27x-18

\displaystyle 54x^3+36x^2+27x-18

\displaystyle 45x^3+36x^2-27x-18

\displaystyle 54x^3+36x^2-27x-18

Correct answer:

\displaystyle 54x^3+36x^2-27x-18

Explanation:

Expand the following expression:

\displaystyle (9x+6)(6x^2-3)

Let's begin by recalling the meaning of FOIL: First, Outer, Inner, Last.

This means that in a situation such as we are given here, we need to multiply all the terms in a particular way. FOIL makes it easy to remember to multiply each pair of terms.

Let's begin:

First: 

\displaystyle ({\color{Blue} 9x}+6)({\color{Blue} 6x^2}-3)\rightarrow9x*6x^2=54x^3

Outer:

\displaystyle ({\color{Blue} 9x}+6)(6x^2{\color{Blue} -3})\rightarrow9x*-3=-27x

Inner:

\displaystyle (9x+{\color{Blue} 6})({\color{Blue} 6x^2}-3)\rightarrow 6*6x^2=36x^2

Last:

\displaystyle (9x{\color{Blue} +6})(6x^2{\color{Blue} -3})=6*-3=-18

Now, put it together in standard form to get:

\displaystyle 54x^3+36x^2-27x-18

Example Question #2 : Exponents And The Distributive Property

If \displaystyle (x-3)^2=25, which of the following could be the value of \displaystyle x?

Possible Answers:

\displaystyle -2

\displaystyle 2

\displaystyle -5

\displaystyle 5

\displaystyle 3

Correct answer:

\displaystyle -2

Explanation:

\displaystyle (x-3)^2=25

Take the square root of both sides.

\displaystyle x-3=\pm 5

\displaystyle x-3=5\ \text{or}\ x-3=-5

Add 3 to both sides of each equation.

\displaystyle x=5+3\ \text{or}\ x=-5+3

\displaystyle x=8\ \text{or}\ x=-2

Example Question #3 : Exponents And The Distributive Property

Simplify:

\displaystyle \left ( xyz \right )^{3}+x^{2}y+\left ( xy \right )^{0}+\left ( xy^{\frac{1}{2}} \right )^{2}

Possible Answers:

\displaystyle x^{3}y^{3}z^{3}+x^{2}y+1

\displaystyle 2x^{5}y^{3}z

\displaystyle x^{3}y^{3}z^{3}+2x^{2}y+1

\displaystyle x^{3}y^{3}z^{3}+x^{2}y

\displaystyle x^{3}y^{3}z^{3}+2x^{2}y

Correct answer:

\displaystyle x^{3}y^{3}z^{3}+2x^{2}y+1

Explanation:

\displaystyle \left ( xyz \right )^{3}+x^{2}y+\left ( xy \right )^{0}+\left ( xy^{\frac{1}{2}} \right )^{2}

= x3y3z3 + x2y + x0y0 + x2y

x3y3z3 + x2y + 1 + x2y

x3y3z3 + 2x2y + 1

Example Question #772 : Algebra

Use the FOIL method to simplify the following expression:

\displaystyle (x^3+2x^2)^2

Possible Answers:

\displaystyle x^6+4x^5+4x^4

\displaystyle 5x^6+4x^4

\displaystyle 4x^5+4

\displaystyle x^6+2x^4

\displaystyle x^6+4x^4

Correct answer:

\displaystyle x^6+4x^5+4x^4

Explanation:

Use the FOIL method to simplify the following expression:

\displaystyle (x^3+2x^2)^2

Step 1: Expand the expression.

\displaystyle (x^3+2x^2)(x^3+2x^2)

Step 2: FOIL

First: \displaystyle x^3\cdot x^3 = x^6

Outside: \displaystyle x^3 \cdot 2x^2 =2x^5

Inside: \displaystyle 2x^2 \cdot x^3 = 2x^5

Last: \displaystyle 2x^2 \cdot 2x^2 = 4x^4

Step 2: Sum the products.

\displaystyle x^6+2x^5+2x^5+4x^4

\displaystyle x^6+4x^5+4x^4

Example Question #4 : Exponents And The Distributive Property

Square the binomial.

\displaystyle (x^{2}y^{4}+xy^{6})^{2}

Possible Answers:

\displaystyle 2x^{8}y^{20}

\displaystyle x^4y^{16}+2x^2y^{24}+xy^{36}

\displaystyle x^4y^8+2x^3y^{10}+x^2y^{12}

\displaystyle x^8y^8+x^2y^{12}

\displaystyle x^{4}y^{8}+x^{2}y^{12}

Correct answer:

\displaystyle x^4y^8+2x^3y^{10}+x^2y^{12}

Explanation:

\displaystyle (x^{2}y^{4}+xy^{6})^{2}

\displaystyle (x^{2}y^{4}+xy^{6})(x^{2}y^{4}+xy^{6})

We will need to FOIL.

First: \displaystyle x^2y^4*x^2y^4=x^4y^8

Inside: \displaystyle xy^6*x^2y^4=x^3y^{10}

Outside: \displaystyle x^2y^4*xy^6=x^3y^{10}

Last: \displaystyle xy^6*xy^6=x^2y^{12}

Sum all of the terms and simplify.

\displaystyle x^4y^8+x^3y^{10}+x^3y^{10}+x^2y^{12}

\displaystyle x^4y^8+2x^3y^{10}+x^2y^{12}

Example Question #3 : Exponents And The Distributive Property

Which of the following is equivalent to 4c(3d)– 8c3d + 2(cd)4?

Possible Answers:

cd(54c * d– 4c+ c* d2)

2(54d– 4c+ 2c* d3)

None of the other answers

2cd(54d2 – 4c+ c* d3)

Correct answer:

2cd(54d2 – 4c+ c* d3)

Explanation:

First calculate each section to yield 4c(27d3) – 8c3d + 2c4d= 108cd– 8c3d + 2c4d4. Now let's factor out the greatest common factor of the three terms, 2cd, in order to get:  2cd(54d– 4c+ c3d3).

Learning Tools by Varsity Tutors