SAT Math : Data Analysis

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #71 : How To Find Arithmetic Mean

Based on the table, what is the the mean shoe size among the children?

Possible Answers:

Correct answer:

Explanation:

To calculate the mean shoe size, first sum up all the shoe sizes and then divide by the number of children.

Looking at the table, there are five children.

Therefore the formula to calculate the mean becomes,

Example Question #102 : Data Analysis

If Billy has an average of  over 5 tests, what is the lowest score Billy can get over the next 3 tests in order to raise his average up to ?

Possible Answers:

Correct answer:

Explanation:

In order to solve this lets write two general equations that we will solve.

 

From the first equation, we get.

Substitute tis into the next equation,

 

Solve for ,

 

Example Question #73 : Arithmetic Mean

The mean of a group of five numbers is 10. The numbers in the group are 7, 11, 23, 4, and x. What is x? 

Possible Answers:

Correct answer:

Explanation:

We know that the mean of the five numbers is ten. Therefore the sum of the five numbers, divided by 5, equals ten.

So,

After solving for x we learn that x equals 5.

The algebraic steps are as follows:

Example Question #103 : Data Analysis

Screen_shot_2013-03-18_at_10.24.04_pm

The chart above shows the scores on two tests for five students in a science class. If John's score was equal to the mode for Test I and equal to the median for Test II, then which of the five students represents John's scores?

Possible Answers:

E

A

B

D

C

Correct answer:

B

Explanation:

The mode of a set of numbers is the number that appears most frequently in that set. The median of a set of numbers is the number that appears in the middle when they are arranged in numerical order. For Test I, the mode is 85. When arranged in numerical order, the scores for Test II are:

70, 70, 80, 85, 90.

That makes the median for Test II 80. The only student in the chart with an 85 on Test I and an 80 on Test II is student B.

Example Question #2 : How To Find Median

The average (arithmetic mean) of 1, 7, 9, and n is –1. What is the median of this set?

Possible Answers:

–2

4

–4

7

1

Correct answer:

4

Explanation:

If the mean is –1, then 1 + 7 + 9 + n = –4. Solving for n gives us n = –21. In numeric order, we now have –21, 1, 7, 9. As there is an even number of numbers, we average the middle two. (1 + 7) / 2 = 4.

Example Question #104 : Data Analysis

The average of 5, 10, 12, 15, and x is 11. What is the median?

Possible Answers:

12

15

13

11

Correct answer:

12

Explanation:

You must first find what x is in order to find the median.

To find x, set up the following equation:

           Asatmath_20_166_q3

To solve the equation, first multiply both sides by 5:

5 + 10 + 12 + 15 + x = 55

Then, add up 5 + 10 + 12 + 15 to get 42:

42 + x = 55

x = 13

Now that you know what x is, you are ready to find the median. To find the median, order the numbers from lowest to highest. The median is the number in the middle.

5, 10, 12, 13, 15

Example Question #2 : Median

Screen_shot_2013-03-18_at_10.29.46_pm

The monthly averaged high-and low-temperatures in Michigan are shown in the given table. What are the median monthly averaged high- and low-temperatures respectively in Michigan?

Possible Answers:

high: 58F, low: 37F

high: 46F, low: 35F

high: 56F, low: 30F

high: 60F, low: 39F

high: 56F, low: 35F

Correct answer:

high: 58F, low: 37F

Explanation:

Median is the middle number when the data are ordered from least to greatest. In this case, there are 12 numbers, so, the median is the average of the middle two numbers, which are the 6th and 7th numbers in an ascending order. For the averaged high-temperature, the median is (56+60)/2=58, and for the averaged low-temperature, the median is (35+39)/2=37

Example Question #3 : Median

Find the median of the following sequence:

3, 4, 5, 6, 7, 7, 10

Possible Answers:

7

6

5

10

Correct answer:

6

Explanation:

The median is the middle number in a sequence when the numbers are put in order. Since this sequence is already in order from least to greatest, we just need to find the middle number. There are 7 terms so the middle term is (7+1)/2 or the 4th term. This is 6.

Example Question #61 : Data Analysis

Find the median of the data set:

25, 37, 13, 58, 52, 83, 21, 51

Possible Answers:

83

44

70

13

42.5

Correct answer:

44

Explanation:

42.5 is the mean of the data.  13 is the minimum.  83 is the maximum.  70 is the range.

To find the median, list all numbers in order:

13, 21, 25, 37, 51, 52, 58, 83

and find the middle value.  In cases like this where there are two middle numbers (37 and 51), find the mean of these two numbers.

(37+51)/2 = 88/2 = 44

Example Question #1 : Median

Find the median in this set of numbers

 

2, 100, 52, 97, 1, 7, 22

Possible Answers:

1

22

52

97

7

Correct answer:

22

Explanation:

in order to find the median, arrange the numbers in ascending order, and find the number in the middle of the list

Learning Tools by Varsity Tutors