SAT Math : Square Roots and Operations

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #11 : Square Roots And Operations

Simplify: 

\displaystyle \sqrt{3}(\sqrt{3}+4)

Possible Answers:

\displaystyle 3+2\sqrt{3}

\displaystyle 12

\displaystyle 3+4\sqrt{3}

\displaystyle 7\sqrt{3}

\displaystyle 9+4\sqrt{3}

Correct answer:

\displaystyle 3+4\sqrt{3}

Explanation:

To simplify the problem, just distribute the radical to each term in the parentheses. 

\displaystyle \\\sqrt{3}(\sqrt{3}+4)\\=\sqrt{9}+4\sqrt{3}\\=3+4\sqrt{3}

Example Question #12 : Square Roots And Operations

Simplify: 

\displaystyle \sqrt{3}(\sqrt{7}+\sqrt{12})

Possible Answers:

\displaystyle 12+4\sqrt{3}

\displaystyle \sqrt{21}+6

\displaystyle \sqrt{21}+3\sqrt{3}

\displaystyle \sqrt{21}+2\sqrt{2}

\displaystyle 21+3\sqrt{3}

Correct answer:

\displaystyle \sqrt{21}+6

Explanation:

To simplify the problem, just distribute the radical to each term in the parentheses. 

\displaystyle \\\sqrt{3}(\sqrt{7}+\sqrt{12})\\=\sqrt{21}+\sqrt{36}\\=\sqrt{21}+6

Example Question #13 : Square Roots And Operations

Simplify: 

\displaystyle -\sqrt{6}(\sqrt{5}-\sqrt{2})

Possible Answers:

\displaystyle 2\sqrt{3}-\sqrt{30}

\displaystyle -\sqrt{30}-2\sqrt{3}

\displaystyle 2\sqrt{3}+\sqrt{30}

\displaystyle 3\sqrt{2}-\sqrt{30}

\displaystyle 12-\sqrt{30}

Correct answer:

\displaystyle 2\sqrt{3}-\sqrt{30}

Explanation:

To simplify the problem, just distribute the radical to each term in the parentheses. 

\displaystyle \\-\sqrt{6}(\sqrt{5}-\sqrt{2})\\=-\sqrt{30}+\sqrt{12}\\=-\sqrt{30}+2\sqrt{3}

Example Question #11 : How To Multiply Square Roots

Simplify: 

\displaystyle -2\sqrt{5}(7\sqrt{3}+3\sqrt{10})

Possible Answers:

\displaystyle -14\sqrt{15}-30\sqrt{2}

\displaystyle -14\sqrt{5}-5\sqrt{2}

\displaystyle -14\sqrt{5}+30\sqrt{2}

\displaystyle 14\sqrt{5}-6\sqrt{2}

\displaystyle -19\sqrt{10}

Correct answer:

\displaystyle -14\sqrt{15}-30\sqrt{2}

Explanation:

To simplify the problem, just distribute the radical to each term in the parentheses. 

\displaystyle \\-2\sqrt{5}(7\sqrt{3}+3\sqrt{10})\\=-14\sqrt{15}-6\sqrt{50}

\displaystyle \\-14\sqrt{15}-6\sqrt{50}\\=-14\sqrt{15}-6*5\sqrt{2}\\=-14\sqrt{15}-30\sqrt{2}

Example Question #12 : How To Multiply Square Roots

Simplify: 

\displaystyle (\sqrt{2}+\sqrt{7})(\sqrt{27}+\sqrt{12})

Possible Answers:

\displaystyle 5\sqrt{6}+5\sqrt{21}

\displaystyle 3\sqrt{3}+2\sqrt{21}

\displaystyle 5\sqrt{6}+2\sqrt{21}+3\sqrt{2}

\displaystyle 3\sqrt{6}+2\sqrt{2}+2\sqrt{3}+3\sqrt{7}

\displaystyle 2\sqrt{5}+5\sqrt{2}+3\sqrt{6}

Correct answer:

\displaystyle 5\sqrt{6}+5\sqrt{21}

Explanation:

 \displaystyle (\sqrt{2}+\sqrt{7})(\sqrt{27}+\sqrt{12}) 

Let's simplify the right parentheses.

\displaystyle (\sqrt{27}+\sqrt{12})=(3\sqrt{{3}}+2\sqrt{3})=5\sqrt{3} 

Now we can distribute the radical to each term in the parentheses.

\displaystyle 5\sqrt{3}(\sqrt{2}+\sqrt{7})=5\sqrt{6}+5\sqrt{21}

 

Example Question #14 : Square Roots And Operations

If \sqrt{x}=3^2\displaystyle \sqrt{x}=3^2 what is x\displaystyle x?

Possible Answers:

3\displaystyle 3

27\displaystyle 27

729\displaystyle 729

9\displaystyle 9

81\displaystyle 81

Correct answer:

81\displaystyle 81

Explanation:

Square both sides:

x = (32)2 = 92 = 81

Example Question #1 : How To Add Square Roots

Simplify in radical form:

\displaystyle \sqrt{507}+\sqrt{12}

Possible Answers:

\displaystyle 26\sqrt{3}

\displaystyle \sqrt{519}

\displaystyle 11\sqrt{6}

\displaystyle 12\sqrt{6}

\displaystyle 15\sqrt{3}

Correct answer:

\displaystyle 15\sqrt{3}

Explanation:

To simplify, break down each square root into its component factors:

\displaystyle \sqrt{507}+\sqrt{12}

\displaystyle \sqrt{169\cdot 3}+\sqrt{4\cdot 3}

\displaystyle \sqrt{13\cdot13\cdot3}\:+\sqrt{2\cdot 2\cdot 3}

You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares \displaystyle \sqrt3, you can add them together to yield the final answer:

\displaystyle 13\sqrt{3}+2\sqrt{3}=15\sqrt{3}

Example Question #23 : Basic Squaring / Square Roots

Simplify: \displaystyle \frac{2\sqrt{3}}{\sqrt{2}}+\frac{4\sqrt{2}}{\sqrt{3}}

 

Possible Answers:

\displaystyle 4\sqrt{3}+\sqrt{2}

\displaystyle 2\sqrt{6}

None of the other answers

\displaystyle 2\sqrt{6}-4\sqrt{2}

\displaystyle \frac{7\sqrt{6}}{3}

Correct answer:

\displaystyle \frac{7\sqrt{6}}{3}

Explanation:

Take each fraction separately first:

(2√3)/(√2) = [(2√3)/(√2)] * [(√2)/(√2)] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6

Similarly:

(4√2)/(√3) = [(4√2)/(√3)] * [(√3)/(√3)] = (4√6)/3 = (4/3)√6

Now, add them together:

√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6

Example Question #1 : How To Add Square Roots

Simplify the following expression: \displaystyle \sqrt{60}+\sqrt{40}+\sqrt{10}

Possible Answers:

\displaystyle 25

\displaystyle 2\sqrt{15}+2\sqrt{20}

\displaystyle 4\sqrt{15}+5\sqrt{5}

\displaystyle 5\sqrt{25}

\displaystyle 2\sqrt{15}+3\sqrt{10}

Correct answer:

\displaystyle 2\sqrt{15}+3\sqrt{10}

Explanation:

Begin by factoring out each of the radicals:

\displaystyle \sqrt{60}+\sqrt{40}+\sqrt{10}=\sqrt{4*15}+\sqrt{4*10}+\sqrt{10}

For the first two radicals, you can factor out a \displaystyle \sqrt{4} or \displaystyle 2:

\displaystyle 2\sqrt{15}+2\sqrt{10}+\sqrt{10}

The other root values cannot be simply broken down. Now, combine the factors with \displaystyle \sqrt{10}:

\displaystyle 2\sqrt{15}+2\sqrt{10}+\sqrt{10}=2\sqrt{15}+3\sqrt{10}

This is your simplest form.

Example Question #31 : Basic Squaring / Square Roots

Solve for \displaystyle x.

Note, \displaystyle x\ge0:

\displaystyle 15\sqrt{x}-10=4\sqrt{x}+4

Possible Answers:

\displaystyle \frac{196}{121}

\displaystyle \frac{841}{14}

\displaystyle 81

\displaystyle \frac{841}{5}

\displaystyle \frac{196}{11}

Correct answer:

\displaystyle \frac{196}{121}

Explanation:

Begin by getting your \displaystyle x terms onto the left side of the equation and your numeric values onto the right side of the equation:

\displaystyle 15\sqrt{x}-4\sqrt{x}=4+10

Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:

\displaystyle 11\sqrt{x}=14

Now, square both sides:

\displaystyle (11\sqrt{x})^2=(14)^2

\displaystyle (11)^2(\sqrt{x})^2=(14)^2

\displaystyle 121x=196

Solve by dividing both sides by \displaystyle 121:

\displaystyle x=\frac{196}{121}

Learning Tools by Varsity Tutors