SAT Math : Distributive Property

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : Distributive Property

\(\displaystyle (\sqrt5+\sqrt3)^2=\)

Possible Answers:

\(\displaystyle \sqrt{15}\)

\(\displaystyle 2+\sqrt{15}\)

\(\displaystyle 2+2\sqrt{15}\)

\(\displaystyle 8+2\sqrt{15 }\)

\(\displaystyle 8+\sqrt{15}\)

Correct answer:

\(\displaystyle 8+2\sqrt{15 }\)

Explanation:

\(\displaystyle (\sqrt5+\sqrt3)^2=(\sqrt5)^2+2\sqrt5\sqrt3+(\sqrt3)^2=5+2\sqrt{15}+3=8+2\sqrt{15}\)

Example Question #1 : Distributive Property

If \(\displaystyle (3x - 4)(3x + 4) = 2\), what is the value of \(\displaystyle 9x^2\)?

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 27\)

\(\displaystyle 4\)

\(\displaystyle 18\)

\(\displaystyle 36\)

Correct answer:

\(\displaystyle 18\)

Explanation:

Remember that (a – b )(a b ) = a 2 – b 2.

We can therefore rewrite (3x – 4)(3x + 4) = 2 as (3x )– (4)2 = 2.

Simplify to find 9x– 16 = 2.

Adding 16 to each side gives us 9x2 = 18.

Example Question #2 : Distributive Property

If \(\displaystyle g(x)=2x^2-2\) and \(\displaystyle h(x)=x+4\), then which of the following is equivalent to \(\displaystyle g(h(x))-h(g(x))\)?

Possible Answers:

\(\displaystyle 16x+28\)

\(\displaystyle 16x\)

\(\displaystyle 2x^3+8x^2-2x-8\)

\(\displaystyle -16x-28\)

\(\displaystyle 28\)

Correct answer:

\(\displaystyle 16x+28\)

Explanation:

We are asked to find the difference between g(h(x)) and h(g(x)), where g(x) = 2x2 – 2 and h(x) = x + 4. Let's find expressions for both.

g(h(x)) = g(x + 4) = 2(x + 4)2 – 2

g(h(x)) = 2(x + 4)(x + 4) – 2

In order to find (x+4)(x+4) we can use the FOIL method.

(x + 4)(x + 4) = x2 + 4x + 4x + 16

g(h(x)) = 2(x2 + 4x + 4x + 16) – 2

g(h(x)) = 2(x2 + 8x + 16) – 2

Distribute and simplify.

g(h(x)) = 2x2 + 16x + 32 – 2

g(h(x)) = 2x2 + 16x + 30

Now, we need to find h(g(x)).

h(g(x)) = h(2x2 – 2) = 2x2 – 2 + 4

h(g(x)) = 2x2 + 2

Finally, we can find g(h(x)) – h(g(x)).

g(h(x)) – h(g(x)) = 2x2 + 16x + 30 – (2x2 + 2)

= 2x2 + 16x + 30 – 2x2 – 2

= 16x + 28

The answer is 16x + 28.

Example Question #3 : Distributive Property

The sum of two numbers is \(\displaystyle s\). The product of the same two numbers is \(\displaystyle p\). If the two numbers are each increased by one, the new product is \(\displaystyle q\). Find \(\displaystyle q-p\) in terms of \(\displaystyle s\).

Possible Answers:

\(\displaystyle s+2\)

\(\displaystyle s-1\)

\(\displaystyle s+1\)

\(\displaystyle s^2\)

\(\displaystyle 2s+1\)

Correct answer:

\(\displaystyle s+1\)

Explanation:

Let the two numbers be x and y.

xy s

xyp

(x + 1)(y + 1) = q

Expand the last equation:

xyxy + 1 = q

Note that both of the first two equations can be substituted into this new equation:

ps + 1 = q

Solve this equation for q – p by subtracting p from both sides:

s + 1 = q – p

Example Question #4 : Distributive Property

Expand the expression:

\dpi{100} \small (x^{3}-4x)(6 + 12x^{2})\(\displaystyle \dpi{100} \small (x^{3}-4x)(6 + 12x^{2})\)

Possible Answers:

\dpi{100} \small 42x^{3}+12x^{5}-24x\(\displaystyle \dpi{100} \small 42x^{3}+12x^{5}-24x\)

\dpi{100} \small 6x^{3} + 12x^{5}-24x-48x^{3}\(\displaystyle \dpi{100} \small 6x^{3} + 12x^{5}-24x-48x^{3}\)

\dpi{100} \small 6x^{3} + 12x^{2}-24x-48\(\displaystyle \dpi{100} \small 6x^{3} + 12x^{2}-24x-48\)

\dpi{100} \small 12x^{5}-42x^{3}-24x\(\displaystyle \dpi{100} \small 12x^{5}-42x^{3}-24x\)

\dpi{100} \small 22x^{2}\(\displaystyle \dpi{100} \small 22x^{2}\)

Correct answer:

\dpi{100} \small 12x^{5}-42x^{3}-24x\(\displaystyle \dpi{100} \small 12x^{5}-42x^{3}-24x\)

Explanation:

When using FOIL, multiply the first, outside, inside, then last expressions; then combine like terms.

\dpi{100} \small (x^{3}-4x)(6 + 12x^{2})\(\displaystyle \dpi{100} \small (x^{3}-4x)(6 + 12x^{2})\)

\dpi{100} \small 6x^{3}+12x^{5}-24x-48x^{3}\(\displaystyle \dpi{100} \small 6x^{3}+12x^{5}-24x-48x^{3}\)

\dpi{100} \small -42x^{3}+12x^{5}-24x\(\displaystyle \dpi{100} \small -42x^{3}+12x^{5}-24x\)

\dpi{100} \small 12x^{5}-42x^{3}-24x\(\displaystyle \dpi{100} \small 12x^{5}-42x^{3}-24x\)

Example Question #5 : Distributive Property

Expand the following expression:

(4x+2)(x^2-2)\(\displaystyle (4x+2)(x^2-2)\)

Possible Answers:

x^3+2x^2-8x-4\(\displaystyle x^3+2x^2-8x-4\)

4x^3+2x^2-8x-4\(\displaystyle 4x^3+2x^2-8x-4\)

4x^3-4\(\displaystyle 4x^3-4\)

4x^3+2x^2+8x+4\(\displaystyle 4x^3+2x^2+8x+4\)

4x^3+4x-4\(\displaystyle 4x^3+4x-4\)

Correct answer:

4x^3+2x^2-8x-4\(\displaystyle 4x^3+2x^2-8x-4\)

Explanation:

(4x+2)(x^2-2)=(4x\times x^2)+(4x\times -2)+(2\times x^2) +(2\times -2)\(\displaystyle (4x+2)(x^2-2)=(4x\times x^2)+(4x\times -2)+(2\times x^2) +(2\times -2)\)

Which becomes

4x^3-8x+2x^2-4\(\displaystyle 4x^3-8x+2x^2-4\)

Or, written better

4x^3+2x^2-8x-4\(\displaystyle 4x^3+2x^2-8x-4\)

Example Question #6 : Distributive Property

Which of the following is equal to the expression \(\displaystyle (3x - 1)(2x + 4)\)?

Possible Answers:

\(\displaystyle 6x^2+2x+10\)

\(\displaystyle 6x^2+10x-4\)

\(\displaystyle 6x^2-4\)

\(\displaystyle {5x+3}\)

\(\displaystyle 6x^2-10\)

Correct answer:

\(\displaystyle 6x^2+10x-4\)

Explanation:

Multiply using FOIL:

First = 3x(2x) = 6x2

Outter = 3x(4) = 12x

Inner = -1(2x) = -2x

Last = -1(4) = -4

Combine and simplify:

6x2 + 12x - 2x - 4 = 6x2 +10x - 4

Example Question #2 : How To Use Foil In The Distributive Property

Simplify the expression.

\(\displaystyle (2x^2-3x)(2y+a)\)

Possible Answers:

\(\displaystyle -6x^3 + 2ay\)

\(\displaystyle -2axy\)

None of the other answers

\(\displaystyle 2x^2y - 2ax^2 - 3xy - 3ax\)

\(\displaystyle 4x^2y + 2ax^2 - 6xy - 3ax\)

Correct answer:

\(\displaystyle 4x^2y + 2ax^2 - 6xy - 3ax\)

Explanation:

Solve by applying FOIL:

First: 2x2 * 2y = 4x2y

Outer: 2x2 * a = 2ax2

Inner: –3x * 2y = –6xy

Last: –3x * a = –3ax

Add them together: 4x2y + 2ax2 – 6xy – 3ax

There are no common terms, so we are done.

Example Question #7 : Distributive Property

\(\displaystyle (6x - 2) (3x + 5) = ax^2 + dx + k\)

Given the equation above, what is the value of \(\displaystyle a-d+k\)?

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle -10\)

\(\displaystyle 9\)

\(\displaystyle -16\)

\(\displaystyle 24\)

Correct answer:

\(\displaystyle -16\)

Explanation:

\(\displaystyle (6x - 2) (3x + 5) = ax^2 + dx + k\)

Use FOIL to expand the left side of the equation.

\(\displaystyle (6x-2)(3x+5)=18x^2+30x-6x-10=18x^2+24x-10\)

\(\displaystyle 18x^2+24x-10=ax^2+dx+k\)

From this equation, we can solve for \(\displaystyle a\), \(\displaystyle d\), and \(\displaystyle k\).

\(\displaystyle 18x^2=ax^2\rightarrow a=18\)

\(\displaystyle 24x=dx\rightarrow d=24\)

\(\displaystyle -10=k\)

Plug these values into \(\displaystyle a-d+k\) to solve.

\(\displaystyle a-d+k=(18)-(24)+(-10)=-16\)

 

Example Question #1 : Foil

Expand and simplify the expression.

\(\displaystyle 4(x-5)(2x+10)\)

Possible Answers:

\(\displaystyle 8x^{2}-40x+200\)

\(\displaystyle 8x^{2}-200\)

\(\displaystyle 8x^{2}-200x\)

\(\displaystyle 8x^{2}-80x-200\)

\(\displaystyle 8x^2-10x+10\)

Correct answer:

\(\displaystyle 8x^{2}-200\)

Explanation:

\(\displaystyle 4(x-5)(2x+10)\)

We can solve by FOIL, then distribute the \(\displaystyle \small 4\). Since all terms are being multiplied, you will get the same answer if you distribute the \(\displaystyle \small 4\) before using FOIL.

First: \(\displaystyle x*2x=2x^2\)

Inside: \(\displaystyle -5*2x=-10x\)

Outside: \(\displaystyle x*10=10x\)

Last: \(\displaystyle -5*10=-50\)

Sum all of the terms and simplify. Do not forget the \(\displaystyle \small 4\) in front of the quadratic!

\(\displaystyle 4(2x^2-10x+10x-50)\)

\(\displaystyle 4(2x^2-50)\)

Finally, distribute the \(\displaystyle \small 4\).

\(\displaystyle 8x^2-200\)

Learning Tools by Varsity Tutors