SAT II Math II : Factoring and Finding Roots

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1191 : Algebra Ii

Factor the trinomial.

\displaystyle 6x^{2}-31x+35

Possible Answers:

\displaystyle (2x-7)(3x-5)

\displaystyle (2x+7)(3x-5)

\displaystyle (3x-7)(2x-5)

\displaystyle (2x-7)(3x+5)

\displaystyle (3x-7)(2x+5)

Correct answer:

\displaystyle (2x-7)(3x-5)

Explanation:

Use the \displaystyle ac-method to split the middle term into the sum of two terms whose coefficients have sum \displaystyle -31 and product \displaystyle 6*35 = 210. These two numbers can be found, using trial and error, to be \displaystyle -21 and \displaystyle -10.

\displaystyle -21*-10=210 and \displaystyle -21+(-10)=-31

Now we know that \displaystyle 6x^{2}-31x+35 is equal to \displaystyle 6x^{2}-10x-21x+35.

Factor by grouping.

\displaystyle (6x^{2}-10x)-(21x-35)

\displaystyle 2x(3x-5)-7(3x-5)

\displaystyle (2x-7)(3x-5)

Example Question #1 : Factoring And Finding Roots

Factor completely:

\displaystyle t^{3} + 343

Possible Answers:

\displaystyle (t + 49)(t^{2}-7t+ 7)

\displaystyle (t + 7)(t-7)^{2}

The polynomial is prime.

\displaystyle \left ( t+7\right )^{3}

\displaystyle (t + 7)(t^{2}-7t+ 49)

Correct answer:

\displaystyle (t + 7)(t^{2}-7t+ 49)

Explanation:

Since both terms are perfect cubes \displaystyle \left (343 = 7^{3} \right ), the factoring pattern we are looking to take advantage of is the sum of cubes pattern. This pattern is

\displaystyle A^{3}+ B^{3} = (A + B) (A^{2}-AB +B^{2})

We substitute \displaystyle t for \displaystyle A and 7 for \displaystyle B:

\displaystyle t^{3} + 343 = t^{3} + 7^{3}

\displaystyle = (t+ 7) (t^{2}-t \cdot 7+7^{2})

\displaystyle = (t+ 7) (t^{2}-7t+49)

The latter factor cannot be factored further, since we would need to find two integers whose product is 49 and whose sum is \displaystyle -7; they do not exist. This is as far as we can go with the factoring.

Example Question #521 : Sat Subject Test In Math Ii

Which of the following values of \displaystyle N would make 

\displaystyle t^{6}+N

a prime polynomial?

Possible Answers:

None of the other responses is correct.

\displaystyle 27

\displaystyle 8

\displaystyle 64

\displaystyle 125

Correct answer:

None of the other responses is correct.

Explanation:

\displaystyle t^{6} is the cube of \displaystyle t^{2}. Therefore, if \displaystyle N is a perfect cube, the expression \displaystyle t^{6}+N is factorable as the sum of two cubes. All four of the choices are perfect cubes - 8, 27, 64, and 125 are the cubes of 2, 3, 4 and 5, respectively. The correct response is that none of the choices are correct.

Example Question #2 : Factoring And Finding Roots

Which of the following values of \displaystyle N would not make

\displaystyle 9t^{2}+N

a prime polynomial?

Possible Answers:

\displaystyle N = 25

None of the other responses is correct.

\displaystyle N = 36

\displaystyle N = 64

\displaystyle N = 49

Correct answer:

\displaystyle N = 36

Explanation:

\displaystyle 9t^{2} is a perfect square term - it is equal to \displaystyle \left (3t \right )^{2}. All of the values of \displaystyle N given in the choices are perfect squares - 25, 36, 49, and 64 are the squares of 5, 6, 7, and 8, respectively. 

Therefore, for each given value of \displaystyle N, the polynomial is the sum of squares, which is normally a prime polynomial. However, if \displaystyle N = 36 - and only in this case - the polynomial can be factored as follows:

\displaystyle 9t^{2}+36 = 9 \cdot t^{2} + 9 \cdot 4 = 9 (t^{2}+ 4).

Example Question #1 : Factoring And Finding Roots

Which of the following is a factor of the polynomial \displaystyle x^{4} - 11x^{2} + 23x - 18?

Possible Answers:

\displaystyle x- 5

\displaystyle x- 1

\displaystyle x-4

\displaystyle x - 3

\displaystyle x- 2

Correct answer:

\displaystyle x- 2

Explanation:

Call \displaystyle P(x) = x^{4} - 11x^{2} + 23x - 18.

By the Rational Zeroes Theorem, since \displaystyle P (x) has only integer coefficients, any rational solution of \displaystyle P (x) = 0 must be a factor of 18 divided by a factor of 1 - positive or negative. 18 has as its factors 1, 2, 3, 6, 9, and 18; 1 has only itself as a factor. Therefore, the rational solutions of \displaystyle P (x) = 0 must be chosen from this set:

\displaystyle \left \{ 1, 2, 3, 6, 9, 18 -1,- 2,- 3,- 6, -9, -18 \right \}.

By the Factor Theorem, a polynomial \displaystyle P (x) is divisible by \displaystyle x- c if and only if \displaystyle P(c) = 0 - that is, if \displaystyle c is a zero. By the preceding result, we can immediately eliminate \displaystyle x-4 and \displaystyle x- 5 as factors, since 4 and 5 have been eliminated as possible zeroes.

Of the three remaining choices, we can demonstrate that \displaystyle x- 2 is the factor by evaluating \displaystyle P(2):

\displaystyle P(x) = x^{4} - 11x^{2} + 23x - 18

\displaystyle P(2) = 2^{4} - 11 \cdot 2 ^{2} + 23 \cdot 2 - 18

\displaystyle = 16 - 11 \cdot 4 + 23 \cdot 2 - 18

\displaystyle = 16 - 44 + 46 - 18

\displaystyle = 0

By the Factor Theorem, it follows that \displaystyle x- 2 is a factor.

As for the other two, we can confirm that neither is a factor by evaluating \displaystyle P(1) and \displaystyle P(3):

\displaystyle P(1) = 1^{4} - 11 \cdot 1 ^{2} + 23 \cdot 1 - 18

\displaystyle = 1- 11 \cdot 1 + 23 \cdot 1 - 18

\displaystyle = 1- 11 + 23 - 18

\displaystyle = -5

 

\displaystyle P(3) = 3^{4} - 11 \cdot 3 ^{2} + 23 \cdot 3 - 18

\displaystyle = 81 -11\cdot 9 + 23 \cdot 3 - 18

\displaystyle = 81 -99 + 69 - 18

\displaystyle =33

Example Question #1 : Factoring And Finding Roots

Give the set of all real solutions of the equation \displaystyle 2x^{4} - 13x^{2} +21 = 0.

Possible Answers:

\displaystyle \left \{ - \frac{\sqrt{14}}{2}, \frac{ \sqrt{14}}{2} \right \}

\displaystyle \left \{ \sqrt{3} ,\frac{ \sqrt{14}}{2} \right \}

\displaystyle \left \{ - \frac{\sqrt{14}}{2}, - \sqrt{3}, \sqrt{3} ,\frac{ \sqrt{14}}{2} \right \}

\displaystyle \left \{ - \sqrt{3}, \sqrt{3} \right \}

The equation has no real solution.

Correct answer:

\displaystyle \left \{ - \frac{\sqrt{14}}{2}, - \sqrt{3}, \sqrt{3} ,\frac{ \sqrt{14}}{2} \right \}

Explanation:

Set \displaystyle y = x^{2}. Then \displaystyle x^{4 } = \left (x^{2} \right )^{2} = y ^{2}

\displaystyle 2x^{4} - 13x^{2} +21 = 0 can be rewritten as

\displaystyle 2 \left (x^{2} \right )^{2} - 13x^{2} +21 = 0

Substituting \displaystyle y^{2} for \displaystyle x^{4 } and \displaystyle y for \displaystyle x^{2}, the equation becomes 

\displaystyle 2 y^{2} - 13y +21 = 0,

a quadratic equation in \displaystyle y.

This can be solved using the \displaystyle ac method. We are looking for two integers whose sum is \displaystyle -13 and whose product is \displaystyle 2 (21)= 42. Through some trial and error, the integers are found to be \displaystyle -7 and \displaystyle -6, so the above equation can be rewritten, and solved using grouping, as

\displaystyle 2 y^{2} - 7y - 6y +21 = 0

\displaystyle (2 y^{2} - 7y )- (6y -21 )= 0

\displaystyle y(2 y - 7 )- 3(2 y - 7 ) = 0

\displaystyle (y - 3 )(2 y - 7 ) = 0

By the Zero Product Principle, one of these factors is equal to zero:

Either:

\displaystyle y- 3 = 0

\displaystyle y - 3 + 3 = 0 + 3

\displaystyle y = 3

Substituting \displaystyle x^{2} back for \displaystyle y:

\displaystyle x^{2} = 3

Taking the positive and negative square roots of both sides:

\displaystyle x = \pm \sqrt{3}.

Or:

\displaystyle 2y- 7 = 0

\displaystyle 2y- 7+ 7 = 0 + 7

\displaystyle 2y = 7

\displaystyle \frac{2y}{2} =\frac{ 7}{2}

\displaystyle y =\frac{ 7}{2}

Substituting back:

\displaystyle x^{2} =\frac{ 7}{2}

Taking the positive and negative square roots of both sides, and applying the Quotient of Radicals property, then simplifying by rationalizing the denominator:

\displaystyle x =\pm \sqrt{\frac{ 7}{2}} = \pm \frac{\sqrt{7}}{\sqrt{2}} = \pm \frac{\sqrt{7} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2} } =\pm \frac{\sqrt{14}}{2}

The solution set is \displaystyle \left \{ - \frac{\sqrt{14}}{2}, - \sqrt{3}, \sqrt{3} ,\frac{ \sqrt{14}}{2} \right \}.

Example Question #2 : Factoring And Finding Roots

Define a function \displaystyle f(x) = x^{2} + \cos 3x.

\displaystyle f(c) = 4 for exactly one real value of \displaystyle c on the interval \displaystyle (1.5, 2.0).

Which of the following statements is correct about \displaystyle c?

Possible Answers:

\displaystyle c \in (1.5, 1.6)

\displaystyle c \in (1.6, 1.7)

\displaystyle c \in (1.7, 1.8)

\displaystyle c \in (1.9, 2.0)

\displaystyle c \in (1.8, 1.9)

Correct answer:

\displaystyle c \in (1.8, 1.9)

Explanation:

Define \displaystyle g(x)= f(x) - 4 = x^{2} + \cos 3x - 4. Then, if \displaystyle g(c)= f(c) - 4 = 0, it follows that \displaystyle f(c) = 4.

By the Intermediate Value Theorem (IVT), if \displaystyle g(x) is a continuous function, and \displaystyle g(a) and \displaystyle g(b) are of unlike sign, then \displaystyle g(c) = 0 for some \displaystyle c \in (a, b).  \displaystyle g(x) is a continuous function, so the IVT applies here.

Evaluate \displaystyle g(x) for each of the following values: \displaystyle \left \{ 1.5, 1.6, 1.7,1.8, 1.9, 2.0 \right \}

\displaystyle g(x)= x^{2} + \cos 3x - 4

\displaystyle g(1.5)= 1.5^{2} + \cos 3 (1.5) - 4

\displaystyle = 2.25 + \cos 4.5 - 4

\displaystyle \approx 2.25 + (-0.21 )- 4

\displaystyle \approx - 1.96

 

\displaystyle g(1.6)= 1.6^{2} + \cos 3 (1.6) - 4

\displaystyle = 2.56 + \cos 4.8 - 4

\displaystyle \approx 2.56 +0.09 - 4

\displaystyle \approx - 1.35

 

\displaystyle g(1.7)= 1.7^{2} + \cos 3 (1.7) - 4

\displaystyle =2.89 + \cos 5.1- 4

\displaystyle \approx 2.89 + 0.38- 4

\displaystyle \approx - 0.73

 

\displaystyle g(1.8)= 1.8^{2} + \cos 3 (1.8) - 4

\displaystyle = 3.24 + \cos 5.4 - 4

\displaystyle \approx 3.24 + 0.63 - 4

\displaystyle \approx - 0.13

 

\displaystyle g(1.9)= 1.9^{2} + \cos 3 (1.9) - 4

\displaystyle =3.61 + \cos 5.7 - 4

\displaystyle \approx 3.61 + 0.83 - 4

\displaystyle \approx 0.44

 

\displaystyle g(2.0)= 2.0^{2} + \cos 3 (2.0) - 4

\displaystyle = 4 + \cos 6 - 4

\displaystyle \approx 4 +0.96 - 4

\displaystyle \approx 0.96

 

Only in the case of \displaystyle (1.8, 1.9) does it hold that \displaystyle g (x) assumes a different sign at each endpoint - \displaystyle g(1.8) < 0 < g(1.9). By the IVT, \displaystyle g(c) = 0, and \displaystyle f(c) = 4, for some \displaystyle c \in (1.8, 1.9).

Example Question #2 : Factoring And Finding Roots

A cubic polynomial \displaystyle p(x) with rational coefficients whose lead term is \displaystyle x^{3} has \displaystyle 2 + 3i and \displaystyle 2 - 3i as two of its zeroes. Which of the following is this polynomial?

Possible Answers:

\displaystyle p(x)= x^{3} -6x^{2}+21x-26

The correct answer cannot be determined from the information given.

\displaystyle p(x)= x^{3} -3x^{2}+9x+13

\displaystyle p(x)= x^{3} -5x^{2}+17x-13

\displaystyle p(x)= x^{3} -2x^{2}+5x+26

Correct answer:

The correct answer cannot be determined from the information given.

Explanation:

A polynomial with rational coefficients has its imaginary zeroes in conjugate pairs. Two imaginary zeroes are given that are each other's complex conjugate -  \displaystyle 2 + 3i and \displaystyle 2 -3i. Since the polynomial is cubic - of degree 3 - it has one other zero, which must be real. However, no information is given about that zero. Therefore, the polynomial cannot be determined.

Example Question #522 : Sat Subject Test In Math Ii

Define functions \displaystyle p (x) =7x and \displaystyle q (x) = 5^{x}.

\displaystyle p(c) =q(c) for exactly one value of \displaystyle c on the interval \displaystyle (1, 1.5). Which of the following is true of \displaystyle c?

Possible Answers:

\displaystyle c \in (1.2, 1.3 )

\displaystyle c \in (1.0, 1.1)

\displaystyle c \in (1.3, 1.4)

\displaystyle c \in (1.4, 1.5)

\displaystyle c\ (1.1, 1.2)

Correct answer:

\displaystyle c \in (1.4, 1.5)

Explanation:

Define 

\displaystyle g(x) = p(x) - q(x)

\displaystyle = 7x- 5^{x}

Then if \displaystyle g(c) = 0,

it follows that

\displaystyle p(c) - q(c) = 0,

or, equivalently,

\displaystyle p(c) = q(c).

By the Intermediate Value Theorem (IVT), if \displaystyle g(x) is a continuous function, and \displaystyle g(a) and \displaystyle g(b) are of unlike sign, then \displaystyle g(c) = 0 for some \displaystyle c \in (a, b)

Since polynomial \displaystyle p(x) and exponential function \displaystyle g(x) are continuous everywhere, so is \displaystyle g(x), so the IVT applies here.

Evaluate \displaystyle g(x) for each of the following values: \displaystyle \left \{ 1. 0 , 1.1, 1.2, 1.3, 1.4, 1.5 \right \}:

\displaystyle g(x) = 7x- 5^{x}

\displaystyle g(1) = 7 (1)- 5^{1} = 7 - 5 = 2

\displaystyle g(1.1) = 7 (1.1)- 5^{1.1} \approx 7.7 - 5.9 \approx 1.8

\displaystyle g(1.2) = 7 (1.2)- 5^{1.2} \approx 8.4 - 6.9 \approx 1.5

\displaystyle g(1.3) = 7 (1.3)- 5^{1.3} \approx 9.1 - 8.1 \approx 1

\displaystyle g(1.4) = 7 (1.4)- 5^{1.4} \approx 9.8 - 9.5 \approx 0.3

\displaystyle g(1.5) = 7 (1.5)- 5^{1.5} \approx 10.5- 11.2 \approx - 0.7

 

Only in the case of \displaystyle (1.4, 1.5) does it hold that \displaystyle g (x) assumes a different sign at both endpoints - \displaystyle g(1.4)> 0 > g(1.5). By the IVT, \displaystyle g(c) = 0, and \displaystyle p(c) = q(c), for some \displaystyle c \in (1.4, 1.5).

Example Question #1 : Factoring And Finding Roots

A cubic polynomial \displaystyle p(x) with rational coefficients and with \displaystyle x^{3} as its leading term has 2 and 3 as its only zeroes. 2 is a zero of multiplicity 1. 

Which of the following is this polynomial?

Possible Answers:

Insufficient information exists to determine the polynomial.

\displaystyle p(x) = x^{3} + 7x^{2} + 16x + 12

\displaystyle p(x) = x^{3} + 8x^{2} + 21x + 18

\displaystyle p(x) = x^{3} - 7x^{2} + 16x- 12

\displaystyle p(x) = x^{3} - 8x^{2} + 21x - 18

Correct answer:

\displaystyle p(x) = x^{3} - 8x^{2} + 21x - 18

Explanation:

A cubic polynomial has three zeroes, if a zero of multiplicity \displaystyle n is counted \displaystyle n times. Since its lead term is \displaystyle x^{3}, we know that, in factored form,

\displaystyle p(x) = (x-b_{1}) (x-b_{2}) (x-b_{3})

where \displaystyle b_{1}\displaystyle b_{2}, and \displaystyle b_{3} are its zeroes.

Since 2 is a zero of multiplicity 1, its only other zero, 3, must be a zero of multiplicity 2.

Therefore, we can set \displaystyle b_{1} = 2\displaystyle b_{2} = b_{3}= 3,  in the factored form of \displaystyle p(x), and 

\displaystyle p(x) = (x-2) (x-3) (x-3),

or

\displaystyle p(x) = (x-2) (x-3) ^{2}

To rewrite this, firs square \displaystyle x -3 by way of the square of a binomial pattern:

\displaystyle (x-3)^{2} = x^{2} - 2 \cdot 3 \cdot x + 3^{2}

\displaystyle (x-3)^{2} = x^{2} - 6x + 9

Thus,

\displaystyle p(x) = (x-2) ( x^{2} - 6x + 9)

Multiplying:

                 \displaystyle x^{2} - 6x + 9 

                             \displaystyle \underline{x - 2}

      \displaystyle -2x^{2} +12x - 18

\displaystyle \underline{x^{3} - 6x^{2} + 9x}________

\displaystyle x^{3} - 8x^{2} + 21x - 18,

the correct polynomial.

Learning Tools by Varsity Tutors