SAT II Math I : Solving Exponential Functions

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #111 : Solving And Graphing Exponential Equations

What is/are the asymptote(s) of the graph of the function \displaystyle g(x) = 0.4 ^{x - 2} + 0.7?

Possible Answers:

\displaystyle y = 1.1

\displaystyle y = 0.4

\displaystyle y = 0.7

\displaystyle x = 2 and \displaystyle y = 0.7

\displaystyle x = 2

Correct answer:

\displaystyle y = 0.7

Explanation:

An exponential function of the form 

\displaystyle g(x) = a^{x- h}+k

has as its one and only asymptote the horizontal line \displaystyle y = k

Since we define \displaystyle g as 

\displaystyle g(x) = 0.4 ^{x - 2} + 0.7,

then \displaystyle k= 0.7

and the only asymptote is the line of the equation \displaystyle y = 0.7.

Example Question #1221 : Mathematical Relationships And Basic Graphs

Determine whether each function represents exponential decay or growth.

 

 

Possible Answers:

a) decay

b) growth

a) growth

b) growth

a) growth

b) decay

a) decay

b) decay

Correct answer:

a) decay

b) growth

Explanation:

a)

This is exponential decay since the base, \displaystyle (1/2), is between \displaystyle 0 and \displaystyle 1.

b)

This is exponential growth since the base, \displaystyle 1.1, is greater than \displaystyle 1.

Example Question #1 : Graphing Exponential Functions

Match each function with its graph.

1. \displaystyle y=2^x

2. \displaystyle y=3(2^x)

3. \displaystyle y=(1/2)^x

 

a.3time2tothex

 

 

b.1over2tothex

 

 

c.2_tothe_x

Possible Answers:

1. \displaystyle c

2. \displaystyle a

3. \displaystyle b

1. \displaystyle a

2. \displaystyle c

3. \displaystyle b

1. \displaystyle b

2. \displaystyle a

3. \displaystyle c

1. \displaystyle c

2. \displaystyle b

3. \displaystyle a

Correct answer:

1. \displaystyle c

2. \displaystyle a

3. \displaystyle b

Explanation:

For \displaystyle y=2^x, our base is greater than \displaystyle 1 so we have exponential growth, meaning the function is increasing. Also, when \displaystyle x=0, we know that \displaystyle y=1 since \displaystyle 2^0=1. The only graph that fits these conditions is \displaystyle c.

 

For \displaystyle y=3(2^x), we have exponential growth again but when \displaystyle x=0\displaystyle y=3. This is shown on graph \displaystyle a.

 

For \displaystyle y=(1/2)^x, we have exponential decay so the graph must be decreasing. Also, when \displaystyle x=0\displaystyle y=1. This is shown on graph \displaystyle b.

 

 

Example Question #1 : Graphing Exponential Functions

An exponential funtion \displaystyle y(t) is graphed on the figure below to model some data that shows exponential decay. At \displaystyle t=0.3648\displaystyle y is at half of its initial value (value when \displaystyle t=0). Find the exponential equation of the form \displaystyle y=Ae^{kt} that fits the data in the graph, i.e. find the constants \displaystyle A and \displaystyle k.

Expdecay

Possible Answers:

\displaystyle y=2.4e^{-0.6t}

\displaystyle y=0.3648e^{0.6t}

\displaystyle y=1.20e^{-1.9t}

\displaystyle y=0.3648e^{-0.6t}

Correct answer:

\displaystyle y=1.20e^{-1.9t}

Explanation:

To determine the constant \displaystyle A, we look at the graph to find the initial value of \displaystyle y , (when \displaystyle t=0) and find it to be \displaystyle y(0)= 1.2.  We can then plug this into our equation \displaystyle y=Ae^{kt} and we get \displaystyle 1.2=Ae^{k0}. Since \displaystyle e^{k0}=e^0=1, we find that \displaystyle A=1.2.

 

To find \displaystyle k, we use the fact that when \displaystyle t=0.3648\displaystyle y is one half of the initial value \displaystyle y(0)=1.2. Plugging this into our equation with \displaystyle A now known gives us \displaystyle \frac{1.2}{2}=0.6=1.2e^{k(0.3648)} . To solve for \displaystyle k, we make use the fact that the natural log is the inverse function of \displaystyle e, so that 

\displaystyle \ln(e^{k(0.3648)})=k(0.3648).

We can write our equation as  \displaystyle \frac{0.6}{1.2}=e^{k(0.3648)} and take the natural log of both sides to get:

\displaystyle \ln(\frac{0.6}{1.2})=\ln(e^{k(0.3648)}) or \displaystyle -0.6931=k(0.3648).

Then \displaystyle k\approx -1.9.

Our model equation is \displaystyle y=1.20e^{-1.9t}.

 

Example Question #6 : Graphing Exponential Functions

In 2010, the population of trout in a lake was 416. It has increased to 521 in 2015. 

Write an exponential function of the form \displaystyle y=ab^x that could be used to model the fish population of the lake. Write the function in terms of \displaystyle x, the number of years since 2010.

Possible Answers:

\displaystyle y=1.2(416)^x

\displaystyle y=416(521)^x

\displaystyle y=416(1.046)^x

\displaystyle y=521(1.005)^x

\displaystyle y=1.005(521)^x

Correct answer:

\displaystyle y=416(1.046)^x

Explanation:

We need to determine the constants \displaystyle a and \displaystyle b. Since \displaystyle y=416 in 2010 (when \displaystyle x=0), then \displaystyle y(0)=ab^0=a and \displaystyle a=416

To get \displaystyle b, we find that when \displaystyle x=5\displaystyle y(5)=416b^5=521.  Then  \displaystyle b^5=\frac{521}{416}.

Using a calculator, \displaystyle {\left(\frac{521}{416}\right)}^{\frac{1}{5}}=1.046, so \displaystyle b\approx 1.046.

Then our model equation for the fish population is \displaystyle y=416(1.046)^x

Example Question #361 : Sat Subject Test In Math I

What is the \displaystyle y-intercept of the graph \displaystyle y = 3^{x}?

Possible Answers:

\displaystyle -3

\displaystyle 3

\displaystyle \frac{1}{3}

\displaystyle 0

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

The \displaystyle y-intercept of any graph describes the \displaystyle y-value of the point on the graph with a \displaystyle x-value of \displaystyle 0.

Thus, to find the \displaystyle y-intercept substitute \displaystyle x = 0.

In this case, you will get,

 \displaystyle y = 3^{0} = 1

Example Question #2 : Graph Exponential Functions

What is the \displaystyle y-intercept of \displaystyle y = 4(2^{x})?

Possible Answers:

There is no \displaystyle y-intercept. 

\displaystyle 8

\displaystyle 4

\displaystyle 2

\displaystyle 0

Correct answer:

\displaystyle 4

Explanation:

The \displaystyle y-intercept of a graph is the point on the graph where the \displaystyle x-value is \displaystyle 0.

Thus, to find the \displaystyle y-intercept, substitute \displaystyle x = 0 and solve for \displaystyle y.

Thus, we get: 

\displaystyle y = 4(2^{0}) = 4(1)=4

Example Question #21 : Solving Exponential Functions

What is the \displaystyle y-intercept of \displaystyle y = 5^{x+2}

Possible Answers:

\displaystyle 5

\displaystyle 0

\displaystyle \frac{1}{25}

\displaystyle 1

\displaystyle 25

Correct answer:

\displaystyle 25

Explanation:

The \displaystyle y-intercept of any function describes the point where \displaystyle x = 0.

Substituting this in to our funciton, we get: 

\displaystyle y = 5^{x+2} = 5^{0+2} = 5^{2} = 25

Example Question #121 : Solving And Graphing Exponential Equations

Which of the following functions represents exponential decay? 

Possible Answers:

\displaystyle y = 5^{x}

\displaystyle y = 6^{x + 3}

\displaystyle y = (-2)^{x}

\displaystyle y = \left(\frac{1}{3}\right)^{x}

\displaystyle y = 3(2^{x})

Correct answer:

\displaystyle y = \left(\frac{1}{3}\right)^{x}

Explanation:

Exponential decay describes a function that decreases by a factor every time \displaystyle x increases by \displaystyle 1.

These can be recognizable by those functions with a base which is between \displaystyle 0 and \displaystyle 1.

The general equation for exponential decay is,

\displaystyle A=A_0b^t where the base is represented by \displaystyle b and \displaystyle 0< b< 1.

Thus, we are looking for a fractional base.

The only function that has a fractional base is,

 \displaystyle y = \left(\frac{1}{3}\right)^{x}

Example Question #11 : Graphing Exponential Functions

Does the function \displaystyle y = 4^{x} have any \displaystyle x-intercepts? 

Possible Answers:

Yes, \displaystyle x = 0

No 

That cannot be determined from the information given. 

Yes, \displaystyle x = 1

Yes, \displaystyle x = 4 and \displaystyle x = -4

Correct answer:

No 

Explanation:

The \displaystyle x-intercept of a function is where \displaystyle y = 0. Thus, we are looking for the \displaystyle x-value which makes \displaystyle 0 = 4^{x}.

If we try to solve this equation for \displaystyle x we get an error.

To bring the exponent down we will need to take the natural log of both sides.

\displaystyle ln(0)=xln(4)

Since the natural log of zero does not exist, there is no exponent which makes this equation true.

Thus, there is no \displaystyle x-intercept for this function. 

Learning Tools by Varsity Tutors