SAT II Math I : Irrational Numbers

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Number Theory

Simplify:

Possible Answers:

Correct answer:

Explanation:

First remember the form of the complex number:

Where "a" is the "Real" part, and "b" is the imaginary part.

Only the real parts can be combined together, and only the imaginary parts can be combined together.

Therefore the equation becomes after distributing the negative sign:

Collect the real and imaginary terms together:

Giving the answer:

Example Question #1 : Equations With Complex Numbers

If  and  are real numbers, and , what is  if ?

Possible Answers:

Correct answer:

Explanation:

To solve for , we must first solve the equation with the complex number for  and . We therefore need to match up the real portion of the compex number with the real portions of the expression, and the imaginary portion of the complex number with the imaginary portion of the expression. We therefore obtain:

 and 

We can use substitution by noticing the first equation can be rewritten as  and substituting it into the second equation. We can therefore solve for :

With this  value, we can solve for :

Since we now have  and , we can solve for :

Our final answer is therefore 

Example Question #1 : Equations With Complex Numbers

Solve for  and

Possible Answers:

Correct answer:

Explanation:

Remember that 

So the powers of  are cyclic. This means that when we try to figure out the value of an exponent of , we can ignore all the powers that are multiples of  because they end up multiplying the end result by , and therefore do nothing.

This means that 

Now, remembering the relationships of the exponents of , we can simplify this to:

Because the elements on the left and right have to correspond (no mixing and matching!), we get the relationships: 

No matter how you solve it, you get the values .

Learning Tools by Varsity Tutors