PSAT Math : How to find the length of a diagonal of a polygon

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Length Of A Diagonal Of A Polygon

Regular Octagon \(\displaystyle ABCDEFGH\) has sidelength 1.

Give the length of diagonal \(\displaystyle \overline{AD}\) .

Possible Answers:

\(\displaystyle \frac{2 + \sqrt{3}}{2}\)

\(\displaystyle \frac{2 + \sqrt{2}}{2}\)

\(\displaystyle 1 + \sqrt{3}\)

\(\displaystyle 1 + \sqrt{2}\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 1 + \sqrt{2}\)

Explanation:

The trick is to construct segments perpendicular to \(\displaystyle \overline{AD}\) from \(\displaystyle B\) and \(\displaystyle C\), calling the points of intersection \(\displaystyle X\) and \(\displaystyle Y\) respectively.

Octagon_1

Each interior angle of a regular octagon measures

\(\displaystyle \frac{\left ( 8 - 2\right ) 180^{\circ }}{8} = 135^{\circ }\),

and by symmetry,  \(\displaystyle m \angle HAD = m \angle ADE = 90^{\circ }\),

so \(\displaystyle m \angle BAX = m \angle CDY= 45^{\circ }\).

This makes \(\displaystyle \Delta BAX\) and \(\displaystyle \Delta CDY\) \(\displaystyle 45^{\circ } -45^{\circ } -90^{\circ }\) triangles.

Since their hypotenuses are sides of the octagon with length 1, then their legs - in particular, \(\displaystyle \overline{AX}\) and \(\displaystyle \overline{YD}\) - have length \(\displaystyle \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\)

Also, since a rectangle was formed when the perpendiculars were drawn, \(\displaystyle XY = BC = 1\).

The length of diagonal \(\displaystyle \overline{AD}\) is

\(\displaystyle AD = AX + XY + YD = \frac{\sqrt{2}}{2}+ 1 + \frac{\sqrt{2}}{2} = 1 + \sqrt{2}\).

Example Question #2 : How To Find The Length Of A Diagonal Of A Polygon

Regular Polygon \(\displaystyle ABCDEFGHIJKL\) (a twelve-sided polygon, or dodecagon) has sidelength 1.

Give the length of diagonal \(\displaystyle \overline{AD}\) to the nearest tenth. 

Possible Answers:

\(\displaystyle \frac{2 + \sqrt{2}}{2}\)

\(\displaystyle 2\)

\(\displaystyle 1 + \sqrt{3}\)

\(\displaystyle 1 + \sqrt{2}\)

\(\displaystyle \frac{2 + \sqrt{3}}{2}\)

Correct answer:

\(\displaystyle 1 + \sqrt{3}\)

Explanation:

The trick is to construct segments perpendicular to \(\displaystyle \overline{AD}\) from \(\displaystyle B\) and \(\displaystyle C\), calling the points of intersection \(\displaystyle X\) and \(\displaystyle Y\) respectively.

Dodecagon

Each interior angle of a regular dodecagon measures

\(\displaystyle \frac{\left ( 12 - 2\right ) 180^{\circ }}{12} = 150^{\circ }\).

Since \(\displaystyle \overline{BX}\) and \(\displaystyle \overline{CY}\) are perpendicular to \(\displaystyle \overline{AD}\), it can be shown via symmetry that they are also perpendicular to \(\displaystyle \overline{BC}\). Therefore, 

\(\displaystyle \angle ABX\) and \(\displaystyle \angle DCY\) both measure \(\displaystyle 60^{\circ }\) 

and \(\displaystyle \Delta ABX\) and \(\displaystyle \Delta DCY\) are \(\displaystyle 30^{\circ}-60^{\circ}-90^{\circ}\) triangles with long legs \(\displaystyle \overline{AX}\) and \(\displaystyle \overline{YD}\). Since their hypotenuses are sides of the dodecagon and therefore have length 1, 

\(\displaystyle AX = YD = \frac{\sqrt{3}}{2}\).

Also, since Quadrilateral \(\displaystyle BCXY\) is a rectangle, \(\displaystyle XY = BC = 1\).

The length of diagonal \(\displaystyle \overline{AD}\) is\(\displaystyle AD = AX + XY + YD = \frac{\sqrt{3}}{2}+ 1 + \frac{\sqrt{3}}{2} = 1 + \sqrt{3}\).

Learning Tools by Varsity Tutors