Precalculus : Use the laws of cosines and sines

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Law Of Cosines And Sines

Which is NOT an angle of the following triangle?

8 

(Not drawn to scale.)

Possible Answers:

\displaystyle 91.2^{\circ}

\displaystyle 33.9^{\circ}

\displaystyle 48.3^{\circ}

\displaystyle 54.9^{\circ}

Correct answer:

\displaystyle 48.3^{\circ}

Explanation:

In order to solve this problem, we need to find the angles of the triangle. Only then will we be able to find which answer choice is NOT an angle. Using the Law of Cosines we are able to find each angle.

\displaystyle \cos(A)=\frac{b^{2}+c^{2}-a^{2}}{2bc}=\frac{9^{2}+11^{2}-6^{2}}{2\times 9\times 11}

\displaystyle cos(A)=0.83

\displaystyle A=\cos^{-1}(0.83)=33.9^{\circ}

 

\displaystyle \cos(B)=\frac{c^{2}+a^{2}-b^{2}}{2ac}=\frac{11^{2}+6^{2}-9^{2}}{2\times 6\times 11}

\displaystyle cos(B)=0.575

\displaystyle B=\cos^{-1}(0.575)=54.9^{\circ}

 

To find angle \displaystyle C we use the formula again or we can remember that the angles in a triangle add up to \displaystyle 180^{\circ}.

\displaystyle C^{\circ}=180^{\circ}-33.9^{\circ}-54.9^{\circ}=91.2^{\circ} 

 

The answer choice that isn't an actual angle of the triangle is \displaystyle 48.3^{\circ}.

Example Question #1 : Law Of Cosines And Sines

Solve the triangle

 

Law_of_cosines__sss_

Possible Answers:

\displaystyle A = 115^{\circ}, B = 22^{\circ}, C=43^{\circ}

\displaystyle A = 95^{\circ}, B = 23^{\circ}, C=62^{\circ}

\displaystyle A = 100^{\circ}, B = 31^{\circ}, C=49^{\circ}

None of the other answers

\displaystyle A = 99^{\circ}, B = 21^{\circ}, C=54^{\circ}

Correct answer:

\displaystyle A = 115^{\circ}, B = 22^{\circ}, C=43^{\circ}

Explanation:

Since we are given all 3 sides, we can use the Law of Cosines in the angle form:

\displaystyle cos(A) = \frac{-a^2+b^2+c^2}{2bc}

\displaystyle cos(B) = \frac{a^2-b^2+c^2}{2ac}

\displaystyle cos(C) = \frac{a^2+b^2-c^2}{2ab}

Let's start by finding angle A:

\displaystyle cos(A) = \frac{-(12)^2+5^2+9^2}{2\cdot5\cdot9} = \frac{-38}{90} = -0.4\overline{22}

\displaystyle A = cos^{-1}(-0.4\overline{22}) = 115^{\circ}

Now let's solve for B:

\displaystyle cos(B) = \frac{12^2-(5)^2+9^2}{2\cdot12\cdot9} = \frac{200}{216} = 0.\overline{925}

\displaystyle B = cos^{-1}(0.\overline{925}) = 22^{\circ}

We can solve for C the same way, but since we now have A and B, we can use our knowledge that all interior angles of a triangle must add up to 180 to find C.

\displaystyle C = 180^{\circ} - 115^{\circ} - 22^{\circ} = 43^{\circ}

Example Question #2 : Law Of Cosines And Sines

Given three sides of the triangle below, determine the angles \displaystyle \theta\displaystyle \phi, and \displaystyle \beta in degrees.

Sss

Possible Answers:

\displaystyle \theta \approx 58.1^\circ , \phi \approx 47.0^\circ , \beta \approx 74.9^\circ

\displaystyle \theta \approx 45.0^\circ , \phi \approx 65.0^\circ , \beta \approx 70.0^\circ

\displaystyle \theta \approx 75.5^\circ , \phi \approx 57.9^\circ , \beta \approx 46.6^\circ

\displaystyle \theta \approx 47.0^\circ , \phi \approx 74.9^\circ , \beta \approx 58.1^\circ

Correct answer:

\displaystyle \theta \approx 75.5^\circ , \phi \approx 57.9^\circ , \beta \approx 46.6^\circ

Explanation:

We are only given sides, so we must use the Law of Cosines. The equation for the Law of Cosines is

\displaystyle a^2=b^2+c^2-2bc\cos{A},

where \displaystyle a\displaystyle b and \displaystyle c are the sides of a triangle and the angle \displaystyle A is opposite the side \displaystyle a.

We have three known sides and three unknown angles, so we must write the Law three times, where each equation lets us solve for a different angle. 

To solve for angle \displaystyle \theta, we write

\displaystyle 16^2=12^2+14^2-2(12)(14) \cos{\theta} and solve for \displaystyle \theta using the inverse cosine function \displaystyle \arccos on a calculator to get

\displaystyle \theta \approx 75.5.

Similarly, for angle \displaystyle \phi,

\displaystyle 14^2=12^2+16^2-2(12)(16) \cos{\phi}

\displaystyle \phi \approx 57.9

and for \displaystyle \beta,

\displaystyle 12^2=14^2+16^2-2(14)(16) \cos{\beta}

and \displaystyle \beta \approx 46.6

 

Example Question #3 : Law Of Cosines And Sines

Lc2b

What is the measurement of \displaystyle \angle C? Round to the nearest tenth, if needed.

Possible Answers:

\displaystyle 83^\circ

\displaystyle 83.7^\circ

\displaystyle 83.8^\circ

\displaystyle 84^\circ

Correct answer:

\displaystyle 83.8^\circ

Explanation:

We need to use the Law of Cosines for side \displaystyle c then solve for \displaystyle cosC.

Therefore, 

\displaystyle \frac{c^2-a^2-b^2}{-2ab}=cosC.

Plugging in the information provided, we have:

\displaystyle \frac{50^2-44^2-29^2}{-2(44)(29)}=cosC.

Then simplify, \displaystyle 0.1085423197=cosC.

To solve for \displaystyle C, use \displaystyle cos^{-1}(.1085423197)=C.

Solve and then round to the appropriate units: \displaystyle 83.76870649=83.8. Therefore, \displaystyle C=83.8^\circ.

Example Question #4 : Law Of Cosines And Sines

Find the measure, in degrees, of the largest angle in a triangle whose sides measure \displaystyle 5, \displaystyle 7, and \displaystyle 10.

Possible Answers:

\displaystyle 102.8^\circ

\displaystyle 87.8^\circ

\displaystyle 93.8^\circ

\displaystyle 111.8^\circ

\displaystyle 119.8^\circ

Correct answer:

\displaystyle 111.8^\circ

Explanation:

When all three sides are given, Law of Cosines is appropriate. 

Since 10 is the largest side length, it is opposite the largest angle and thus should be the c-value in the equation below.

Example Question #5 : Law Of Cosines And Sines

Use the Law of Cosines to find \displaystyle b

6

(Triangle not drawn to scale.)

Possible Answers:

\displaystyle b=15.2

\displaystyle b=8

\displaystyle b=135

\displaystyle b=12

\displaystyle b=6.6

Correct answer:

\displaystyle b=6.6

Explanation:

We need to use the Law of Cosines in order to solve this problem

\displaystyle b^{2}=a^{2}+c^{2}-2ac\cos(B)

in this case, \displaystyle a=6, c=10, B=40^{\circ} 

In order to arrive at our answer, we plug the numbers into our formula:

\displaystyle b^{2}=6^{2}+10^{2}-2(6)(10)\cos (40^{\circ})

\displaystyle b^{2}=36+100-91.9

\displaystyle b\approx6.6

Note: we use the "approximately" to indicate the answer is around 6.6. It will vary depending on your rounding.

Example Question #6 : Law Of Cosines And Sines

Use the Law of Cosines to find \displaystyle a.

7

(Triangle not drawn to scale.)

Possible Answers:

\displaystyle a=74

\displaystyle a=17

\displaystyle a=9.6

\displaystyle a=93

\displaystyle a=131.5

Correct answer:

\displaystyle a=9.6

Explanation:

In order to solve this problem, we need to use the following formula

\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos(A)

in this case, \displaystyle b=11, c=7, A=60^{\circ}

We plug our numbers into our formula and get our answer:

\displaystyle a^{2}=11^{2}+7^{2}-2(11)(7)\cos (60^{\circ})

\displaystyle a^{2}=121+49-77

\displaystyle a^{2}=93

\displaystyle a\approx 9.6

 

Note: we use the "approximately" to indicate that the answer is around 9.6. It will vary depending on your rounding.

Example Question #7 : Law Of Cosines And Sines

The 2 sides of a triangle have lengths of 10 and 20.  The included angle is 25 degrees.  What is the length of the third side to the nearest integer?

Possible Answers:

\displaystyle 9

\displaystyle 10

\displaystyle 14

\displaystyle 12

\displaystyle 8

Correct answer:

\displaystyle 12

Explanation:

Write the formula for the Law of Cosines.

\displaystyle c^2=a^2+b^2-2abcos(C)

Substitute the side lengths of the triangle and the included angle to find the third length.

\displaystyle c^2=10^2+20^2-2(10)(20)cos(25)

\displaystyle c^2=100+400-400cos(25)

\displaystyle c^2=500-400(.9063)

\displaystyle c^2=137.48

\displaystyle c=11.725

Round this to the nearest integer.

\displaystyle c=12

Example Question #8 : Law Of Cosines And Sines

What is the approximate length of the unknown side of the triangle if two sides of the triangle are \displaystyle 10 and \displaystyle 20, with an included angle of \displaystyle 30^\circ?

Possible Answers:

\displaystyle 13.4

\displaystyle 12.9

\displaystyle 12.4

\displaystyle 20.5

\displaystyle 13

Correct answer:

\displaystyle 12.4

Explanation:

Write the formula for the Law of Cosines.

\displaystyle c^2=a^2+b^2-2abcos(C)

Substitute the known values and solve for \displaystyle c.

\displaystyle c^2=10^2+20^2-2(10)(20)cos(30)

\displaystyle c^2=100+400-400(\frac{\sqrt3}{2})

\displaystyle c^2=500-200\sqrt3

\displaystyle c=\sqrt{500-200\sqrt3} =12.3931=12.4

Example Question #2 : Use The Laws Of Cosines And Sines

Lc1c

What is the measurement of side \displaystyle a using the Law of Cosines? Round to the nearest tenth.

Possible Answers:

\displaystyle 235m

\displaystyle 234.2m

\displaystyle 234.3m

\displaystyle 234m

Correct answer:

\displaystyle 234.3m

Explanation:

The Law of Cosines for side \displaystyle a is,

 \displaystyle a^2=b^2+c^2-2bc\cdot cosA.

Plugging in the information we know, the formula is,

 \displaystyle a^2=400^2+375^2-2(400)(375)cos(35)=54879.38671.

Then take the square of both sides: \displaystyle a=234.2634985.

Finally, round to the appropriate units: \displaystyle a=234.3m.

Learning Tools by Varsity Tutors