Precalculus : Trigonometric Identities

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Sum And Difference Identities

According to the trigonometric identities, \(\displaystyle 1+cot^2(x)=?\)

Possible Answers:

\(\displaystyle tan(x)\)

\(\displaystyle \frac{sin(x)}{cos(x)}\)

\(\displaystyle \frac{1}{tan(x)}\)

\(\displaystyle csc^2(x)\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle csc^2(x)\)

Explanation:

The trigonometric identity \(\displaystyle 1+cot^2(x)=csc^2(x)\), is an important identity to memorize.

Some other identities that are important to know are:

\(\displaystyle \frac{sin(x)}{cos(x)}=tan(x)\)

\(\displaystyle cot(x)=\frac{1}{tan(x)}\)

\(\displaystyle sin^2(x)+cos^2(x)=1\)

Example Question #1 : Sum And Difference Identities

Use the sum or difference identity to find the exact value: \(\displaystyle sin165^\circ\)

Possible Answers:

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\)

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

\(\displaystyle \frac{\sqrt{6}+\sqrt{2}}{4}\)

\(\displaystyle \frac{\sqrt{6}}{4}\)

Correct answer:

\(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\)

Explanation:

Again, here we break up the 165 into \(\displaystyle 135+30\) and solve using the sin identity: \(\displaystyle sin135\cdot cos30+cos135\cdot sin30\rightarrow \frac{\sqrt{2}}{2}\cdot \frac{\sqrt{3}}{2}+\frac{-\sqrt{2}}{2}\cdot \frac{1}{2}\rightarrow \frac{\sqrt{6}-\sqrt{2}}{4}\)  

Example Question #1 : Trigonometric Identities

Is the following equation an identity? \(\displaystyle sin(x-\pi)=sin(x)\)

Possible Answers:

It cannot be determined from the given information.

Yes it is an identity.

No it is not an identity.

Correct answer:

No it is not an identity.

Explanation:

\(\displaystyle sin(x-\pi)=sinx\rightarrow sinxcos\pi-cosxsin\pi=sinx\rightarrow sinx\cdot (-1)-cosx\cdot (0)\rightarrow -sinx-0=sinx\rightarrow -sinx\neq sinx\)

and so this is again not an identity

Example Question #1 : Sum And Difference Identities

Is the following equation an identity? \(\displaystyle \sin \left ( x-\pi \right )=\sin \left ( x \right )\)?

Possible Answers:

No it is not an identity

The question cannot be answered based on the information provided.

Yes it is an identity

Example Question #1 : Sum And Difference Identities For Cosine

Use the sum or difference identity to find the exact value: \(\displaystyle cos255^\circ\)

Possible Answers:

\(\displaystyle \frac{-1}{2}\)

\(\displaystyle \frac{\sqrt{2}+\sqrt{6}}{4}\)

\(\displaystyle \frac{2\sqrt{2}}{4}\)

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

\(\displaystyle \frac{1}{2}\)

Correct answer:

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

Explanation:

Using the identity, we can break up the 255 into and then solve: \(\displaystyle cos300\cdot cos45+sin300\cdot sin45\rightarrow \frac{1}{2}\cdot \frac{\sqrt{2}}{2}+\frac{-\sqrt{3}}{2}\cdot \frac{\sqrt{2}}{2}\rightarrow \frac{\sqrt{2}-\sqrt{6}}{4}\)  

Example Question #1 : Trigonometric Identities

Is the following equation an identity? \(\displaystyle cos(x-\pi)=cos(x)\)

Possible Answers:

Yes it is an identity.

No it is not an identity.

It cannot be determined from the given information.

Correct answer:

No it is not an identity.

Explanation:

\(\displaystyle cos(x-\pi)=cos(x)\rightarrow cosxcos\pi+sinxsin\pi=cosx\rightarrow cosx(-1)+sinx(0)=cosx\rightarrow -cosx\neq cosx\)

and due to this inequality, this is not an identity

Example Question #1 : Sum And Difference Identities

Use the sum or difference identity to find the exact value: \(\displaystyle \cos 255^{\circ}\)

Possible Answers:

\(\displaystyle \frac{\sqrt{2}+\sqrt{6}}{4}\)

\(\displaystyle -\frac{1}{2}\)

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{2\sqrt{2}}{4}\)

Correct answer:

\(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\)

Explanation:

Using the identity, we can break up the \(\displaystyle 255\) into \(\displaystyle 300-45\) and then solve: \(\displaystyle \cos 300\cdot \cos 45+\sin 300\cdot \sin 45\rightarrow \frac{1}{2}\cdot \frac{\sqrt{2}}{2}+\frac{-\sqrt{3}}{2}\cdot \frac{\sqrt{2}}{2}\rightarrow \frac{\sqrt{2}-\sqrt{6}}{4}\) and so the correct answer is \(\displaystyle \frac{\sqrt{2}-\sqrt{6}}{4}\).

Example Question #2 : Trigonometric Identities

Possible Answers:

The answer cannot be determined from the information provided.

No it is not an identity

Yes it is an identity

Example Question #9 : Sum And Difference Identities

Use the sum or difference identity to find the exact value of \(\displaystyle \sin 165^{\circ}\).

Possible Answers:

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{\sqrt{6}}4{}\)

\(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\)

Correct answer:

\(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\)

Explanation:

Here we break up the \(\displaystyle 165\) into \(\displaystyle 135+30\) and solve using the sin identity: \(\displaystyle \sin 135\cdot \cos 30+\cos 135\cdot \sin 30\rightarrow \frac{\sqrt{2}}2{}\cdot \frac{\sqrt{3}}2{}+\frac{-\sqrt{2}}2{}\cdot \frac{1}{2}\rightarrow \frac{\sqrt{6}-\sqrt{2}}{4}\) and so here the credited answer is \(\displaystyle \frac{\sqrt{6}-\sqrt{2}}{4}\).

Example Question #1 : Trigonometric Identities

Use trigonometric identities to solve the following equation for \(\displaystyle \theta\):

\(\displaystyle tan^2\theta + sec^2\theta = 1\)

Possible Answers:

\(\displaystyle \theta = \pi/4+ n\pi\)

\(\displaystyle \theta= n\pi\)

\(\displaystyle \theta = \pi/3+ n\)

\(\displaystyle \theta = \pi/2+ n\pi\)

\(\displaystyle \theta = \pi/3+ n\)

Correct answer:

\(\displaystyle \theta= n\pi\)

Explanation:

Use the trigonometric identities to switch sec into terms of tan:

\(\displaystyle tan^2\theta + sec^2\theta = tan^2\theta + (tan^2 \theta + 1) = 2tan^2\theta + 1 = 1\)

hence,

\(\displaystyle 2tan^2\theta = 0\)

 

So we have \(\displaystyle \tan \theta = 0\), making \(\displaystyle \theta= n \pi\)

Therefore the solution is \(\displaystyle \theta = n \pi\) for n being any integer.

Learning Tools by Varsity Tutors